Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotherapeutics ; 19(5): 1649-1661, 2022 09.
Article in English | MEDLINE | ID: mdl-35864415

ABSTRACT

Microglial activation with the production of pro-inflammatory mediators such as IL-6, TNF-α, and IL-1ß, is a major driver of neuropathic pain (NP) following peripheral nerve injury. We have previously shown that the RNA binding protein, HuR, is a positive node of regulation for many of these inflammatory mediators in glia and that its chemical inhibition or genetic deletion attenuates their production. In this report, we show that systemic administration of SRI-42127, a novel small molecule HuR inhibitor, attenuates mechanical allodynia, a hallmark of NP, in the early and chronic phases after spared nerve injury in male and female mice. Flow cytometry of lumbar spinal cords in SRI-42127-treated mice shows a reduction in infiltrating macrophages and a concomitant decrease in microglial populations expressing IL-6, TNF-α, IL-1ß, and CCL2. Immunohistochemistry, ELISA, and qPCR of lumbar spinal cord tissue indicate suppression of these cytokines and other inflammatory mediators. ELISA of plasma samples in the acute phase also shows attenuation of inflammatory responses. In summary, inhibition of HuR by SRI-42127 leads to the suppression of neuroinflammatory responses and allodynia after nerve injury and represents a promising new direction in the treatment of NP.


Subject(s)
Neuralgia , Trauma, Nervous System , Mice , Male , Female , Animals , Tumor Necrosis Factor-alpha/metabolism , RNA/metabolism , Interleukin-6/metabolism , Disease Models, Animal , Neuralgia/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Microglia/metabolism , Spinal Cord/metabolism , Cytokines/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...