Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 6(1): 82, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106032

ABSTRACT

In drug discovery, computational methods are a key part of making informed design decisions and prioritising experiments. In particular, optimizing compound affinity is a central concern during the early stages of development. In the last 10 years, alchemical free energy (FE) calculations have transformed our ability to incorporate accurate in silico potency predictions in design decisions, and represent the 'gold standard' for augmenting experiment-driven drug discovery. However, relative FE calculations are complex to set up, require significant expert intervention to prepare the calculation and analyse the results or are provided only as closed-source software, not allowing for fine-grained control over the underlying settings. In this work, we introduce an end-to-end relative FE workflow based on the non-equilibrium switching approach that facilitates calculation of binding free energies starting from SMILES strings. The workflow is implemented using fully modular steps, allowing various components to be exchanged depending on licence availability. We further investigate the dependence of the calculated free energy accuracy on the initial ligand pose generated by various docking algorithms. We show that both commercial and open-source docking engines can be used to generate poses that lead to good correlation of free energies with experimental reference data.

2.
Bioinformatics ; 38(21): 4951-4952, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36073898

ABSTRACT

SUMMARY: We present Icolos, a workflow manager written in Python as a tool for automating complex structure-based workflows for drug design. Icolos can be used as a standalone tool, for example in virtual screening campaigns, or can be used in conjunction with deep learning-based molecular generation facilitated for example by REINVENT, a previously published molecular de novo design package. In this publication, we focus on the internal structure and general capabilities of Icolos, using molecular docking experiments as an illustrative example. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/MolecularAI/Icolos under the Apache 2.0 license. Tutorial notebooks containing minimal working examples can be found at https://github.com/MolecularAI/IcolosCommunity. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Drug Design , Software , Workflow , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...