Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Malar J ; 20(1): 171, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33781261

ABSTRACT

BACKGROUND: As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability. METHODS: A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed. RESULTS: Some 57.0% (95% CI 53.9-60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4-86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children < 5 years (45.8%) and adults (42.1%) were prioritized, with fewer school-age children 5-14 years (35.9%), youths 15-24 years (28.1%) and seniors > 65 years (32.6%) sleeping under ITNs. Crowding ([Formula: see text] 3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: [Formula: see text] 3 people slept under them (OR 0.50 (95% CI 0.40-0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56-0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7-30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets. CONCLUSION: Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Ownership/statistics & numerical data , Cross-Sectional Studies , Family Characteristics , Insecticide-Treated Bednets/supply & distribution , Mosquito Control/instrumentation , Tanzania
2.
Malar J ; 20(1): 12, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407496

ABSTRACT

BACKGROUND: N,N-Diethyl-3-methylbenzamide (DEET) topical mosquito repellents are effective personal protection tools. However, DEET-based repellents tend to have low consumer acceptability because they are cosmetically unappealing. More attractive formulations are needed to encourage regular user compliance. This study evaluated the protective efficacy and protection duration of a new topical repellent ointment containing 15% DEET, MAÏA® compared to 20% DEET in ethanol using malaria and dengue mosquito vectors in Bagamoyo Tanzania. METHODS: Fully balanced 3 × 3 Latin square design studies were conducted in large semi-field chambers using laboratory strains of Anopheles gambiae sensu stricto, Anopheles arabiensis and Aedes aegypti. Human volunteers applied either MAÏA® ointment, 20% DEET or ethanol to their lower limbs 6 h before the start of tests. Approximately 100 mosquitoes per strain per replicate were released inside each chamber, with 25 mosquitoes released at regular intervals during the collection period to maintain adequate biting pressure throughout the test. Volunteers recaptured mosquitoes landing on their lower limbs for 6 h over a period of 6 to 12-h post-application of repellents. Data analysis was conducted using mixed-effects logistic regression. RESULTS: The protective efficacy of MAÏA® and 20% DEET was not statistically different for each of the mosquito strains: 95.9% vs. 97.4% against An. gambiae (OR = 1.53 [95% CI 0.93-2.51] p = 0.091); 96.8% vs 97.2% against An. arabiensis (OR = 1.08 [95% CI 0.66-1.77] p = 0.757); 93.1% vs 94.6% against Ae. aegypti (OR = 0.76 [95% CI 0.20-2.80] p = 0.675). Average complete protection time (CPT) in minutes of MAÏA® and that of DEET was similar for each of the mosquito strains: 571.6 min (95% CI 558.3-584.8) vs 575.0 min (95% CI 562.1-587.9) against An. gambiae; 585.6 min (95% CI 571.4-599.8) vs 580.9 min (95% CI 571.1-590.7) against An. arabiensis; 444.1 min (95% CI 401.8-486.5) vs 436.9 min (95% CI 405.2-468.5) against Ae. aegypti. CONCLUSIONS: MAÏA® repellent ointment provides complete protection for 9 h against both An. gambiae and An. arabiensis, and 7 h against Ae. aegypti similar to 20% DEET (in ethanol). MAÏA® repellent ointment can be recommended as a tool for prevention against outdoor biting mosquitoes in tropical locations where the majority of the people spend an ample time outdoor before going to bed.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , DEET/pharmacology , Insect Repellents/pharmacology , Adult , Animals , Female , Humans , Male , Ointments , Random Allocation , Single-Blind Method , Tanzania , Young Adult
3.
Parasit Vectors ; 13(1): 392, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32736580

ABSTRACT

BACKGROUND: Spatial repellents that drive mosquitoes away from treated areas, and odour-baited traps, that attract and kill mosquitoes, can be combined and work synergistically in a push-pull system. Push-pull systems have been shown to reduce house entry and outdoor biting rates of malaria vectors and so have the potential to control other outdoor biting mosquitoes such as Aedes aegypti that transmit arboviral diseases. In this study, semi-field experiments were conducted to evaluate whether a push-pull system could be used to reduce bites from Aedes mosquitoes. METHODS: The push and pull under investigation consisted of two freestanding transfluthrin passive emanators (FTPE) and a BG sentinel trap (BGS) respectively. The FTPE contained hessian strips treated with 5.25 g of transfluthrin active ingredient. The efficacies of FTPE and BGS alone and in combination were evaluated by human landing catch in a large semi-field system in Tanzania. We also investigated the protection of FTPE over six months. The data were analyzed using generalized linear mixed models with binomial distribution. RESULTS: Two FTPE had a protective efficacy (PE) of 61.2% (95% confidence interval (CI): 52.2-69.9%) against the human landing of Ae. aegypti. The BGS did not significantly reduce mosquito landings; the PE was 2.1% (95% CI: -2.9-7.2%). The push-pull provided a PE of 64.5% (95% CI: 59.1-69.9%). However, there was no significant difference in the PE between the push-pull and the two FTPE against Ae. aegypti (P = 0.30). The FTPE offered significant protection against Ae. aegypti at month three, with a PE of 46.4% (95% CI: 41.1-51.8%), but not at six months with a PE of 2.2% (95% CI: -9.0-14.0%). CONCLUSIONS: The PE of the FTPE and the full push-pull are similar, indicative that bite prevention is primarily due to the activity of the FTPE. While these results are encouraging for the FTPE, further work is needed for a push-pull system to be recommended for Ae. aegypti control. The three-month protection against Ae. aegypti bites suggests that FTPE would be a useful additional control tool during dengue outbreaks, that does not require regular user compliance.


Subject(s)
Cyclopropanes/pharmacology , Fluorobenzenes/pharmacology , Mosquito Control/methods , Aedes/drug effects , Animals , Dengue/prevention & control , Insect Repellents/pharmacology , Insecticides/pharmacology , Mosquito Vectors/drug effects , Odorants , Tanzania
4.
Malar J ; 18(1): 441, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31870365

ABSTRACT

BACKGROUND: A clear understanding of mosquito biology is fundamental to the control efforts of mosquito-borne diseases such as malaria. Mosquito mark-release-recapture (MMRR) experiments are a popular method of measuring the survival and dispersal of disease vectors; however, examples with African malaria vectors are limited. Ethical and technical difficulties involved in carrying out MMRR studies may have held back research in this area and, therefore, a device that marks mosquitoes as they emerge from breeding sites was developed and evaluated to overcome the problems of MMRR. METHODS: A modified self-marking unit that marks mosquitoes with fluorescent pigment as they emerge from their breeding site was developed based on a previous design for Culex mosquitoes. The self-marking unit was first evaluated under semi-field conditions with laboratory-reared Anopheles arabiensis to determine the marking success and impact on mosquito survival. Subsequently, a field evaluation of MMRR was conducted in Yombo village, Tanzania, to examine the feasibility of the system. RESULTS: During the semi-field evaluation the self-marking units successfully marked 86% of emerging mosquitoes and there was no effect of fluorescent marker on mosquito survival. The unit successfully marked wild male and female Anopheles gambiae sensu lato (s.l.) in sufficiently large numbers to justify its use in MMRR studies. The estimated daily survival probability of An. gambiae s.l. was 0.87 (95% CI 0.69-1.10) and mean dispersal distance was 579 m (95% CI 521-636 m). CONCLUSIONS: This study demonstrates the successful use of a self-marking device in an MMRR study with African malaria vectors. This method may be useful in investigating population structure and dispersal of mosquitoes for deployment and evaluation of future vector control tools, such as gene drive, and to better parameterize mathematical models.


Subject(s)
Animal Distribution , Anopheles/physiology , Entomology/methods , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Female , Longevity , Malaria , Male , Tanzania
5.
Malar J ; 18(1): 153, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31039788

ABSTRACT

BACKGROUND: Insecticide-treated net (ITN) durability, measured through physical integrity and bioefficacy, must be accurately assessed in order to plan the timely replacement of worn out nets and guide procurement of longer-lasting, cost-effective nets. World Health Organization (WHO) guidance advises that new intervention class ITNs be assessed 3 years after distribution, in experimental huts. In order to obtain information on whole-net efficacy cost-effectively and with adequate replication, a new bioassay, the Ifakara Ambient Chamber Test (I-ACT), a semi-field whole net assay baited with human host, was compared to established WHO durability testing methods. METHODS: Two experiments were conducted using pyrethroid-susceptible female adult Anopheles gambiae sensu stricto comparing bioefficacy of Olyset®, PermaNet® 2.0 and NetProtect® evaluated by I-ACT and WHO cone and tunnel tests. In total, 432 nets (144/brand) were evaluated using I-ACT and cone test. Olyset® nets (132/144) that did not meet the WHO cone test threshold criteria (≥ 80% mortality or ≥ 95% knockdown) were evaluated using tunnel tests with threshold criteria of ≥ 80% mortality or ≥ 90% feeding inhibition for WHO tunnel and I-ACT. Pass rate of nets tested by WHO combined standard WHO bioassays (cone/tunnel tests) was compared to pass in I-ACT only by net brand and time after distribution. RESULTS: Overall, more nets passed WHO threshold criteria when tested with I-ACT than with standard WHO bioassays 92% vs 69%, (OR: 4.1, 95% CI 3.5-4.7, p < 0.0001). The proportion of Olyset® nets that passed differed if WHO 2005 or WHO 2013 LN testing guidelines were followed: 77% vs 71%, respectively. Based on I-ACT results, PermaNet® 2.0 and NetProtect® demonstrated superior mortality and non-inferior feeding inhibition to Olyset® over 3 years of field use in Tanzania. CONCLUSION: Ifakara Ambient Chamber Test may have use for durability studies and non-inferiority testing of new ITN products. It measures composite bioefficacy and physical integrity with both mortality and feeding inhibition endpoints, using fewer mosquitoes than standard WHO bioassays (cone and tunnel tests). The I-ACT is a high-throughput assay to evaluate ITN products that work through either contact toxicity or feeding inhibition. I-ACT allows mosquitoes to interact with a host sleeping underneath a net as encountered in the field, without risk to human participants.


Subject(s)
Biological Assay/methods , Insecticide-Treated Bednets/standards , Animals , Anopheles , Biological Assay/standards , Female , Humans , Insecticide-Treated Bednets/economics , Malaria/prevention & control , Mosquito Control/methods , Pyrethrins/pharmacology , Tanzania , World Health Organization
6.
Malar J ; 15: 165, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26979404

ABSTRACT

BACKGROUND: Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. METHODS: Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. RESULTS: A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. CONCLUSIONS: Both East African and Ifakara huts performed in a similar way although Ifakara huts allowed more mosquitoes to enter, increasing data power. The work convincingly demonstrates that the East African huts and Ifakara huts collect substantially more mosquitoes than the West African huts.


Subject(s)
Entomology/methods , Insect Vectors/drug effects , Insect Vectors/physiology , Insecticide-Treated Bednets , Insecticides/administration & dosage , Mosquito Control/methods , Animals , Anopheles/drug effects , Anopheles/physiology , Culex/drug effects , Culex/physiology , Feeding Behavior/drug effects , Female , Healthy Volunteers , Humans , Malvaceae/drug effects , Malvaceae/physiology , Survival Analysis , Tanzania
7.
Malar J ; 15: 176, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26993981

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the first line choice for malaria vector control in sub-Saharan Africa, with most countries adopting universal coverage campaigns. However, there is only limited information on LLIN durability under user conditions. Therefore, this study aimed to assess the durability of Olyset(®) LLINs distributed during campaigns between 2009 and 2011 in Tanzania. METHODS: A retrospective field survey was conducted in eight districts in Tanzania mainland to assess the durability of Olyset campaign nets. Household questionnaires were used to assess attrition, i.e. net loss. All nets remaining in households were collected. A sub-sample of 198 Olyset campaign nets was examined for bio-efficacy against Anopheles gambiae s.s. mosquitoes, permethrin content and physical integrity following standard World Health Organization (WHO) methods. RESULTS: Of 6067 campaign nets reported to have been received between 2009 and 2011, 35% (2145 nets) were no longer present. Most of those nets had been discarded (84%) mainly because they were too torn (94%). Of the 198 sub-sampled Olyset LLINs, 61% were still in serviceable physical condition sufficient to provide personal protection while 39% were in unserviceable physical condition according to WHO proportionate Hole Index (pHI). More than 96% (116/120) of nets in serviceable condition passed WHO bioefficacy criteria while all nets in unserviceable condition passed WHO bioefficacy criteria. Overall mean permethrin content was 16.5 g/kg (95% CI 16.2-16.9) with 78% of the sub-sampled nets retaining recommended permethrin content regardless of their age or physical condition. Nets aged 4 years and above had a mean permethrin content of 14 g/kg (95% CI 12.0-16.0). The only statistically significant predictor of reduced physical net integrity was rats in the house. CONCLUSIONS: Two-to-four years after a mass campaign, only 39% of distributed nets remain both present and in serviceable physical condition, a functional survival considerably below WHO assumptions of 50% survival of a 'three-year' net. However, the majority of nets still retained substantial levels of permethrin and could still be bio-chemically useful against mosquitoes if their holes were repaired, adding evidence to the value of net care and repair campaigns.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/methods , Animals , Anopheles/drug effects , Biological Assay , Cross-Sectional Studies , Family Characteristics , Humans , Insecticides/analysis , Insecticides/pharmacology , Permethrin/analysis , Permethrin/pharmacology , Retrospective Studies , Surveys and Questionnaires , Tanzania
8.
BMC Public Health ; 14: 1266, 2014 Dec 13.
Article in English | MEDLINE | ID: mdl-25495268

ABSTRACT

BACKGROUND: Long-Lasting Insecticidal Nets (LLINs) are one of the major malaria vector control tools, with most countries adopting free or subsidised universal coverage campaigns of populations at-risk from malaria. It is essential to understand LLIN durability so that public health policy makers can select the most cost effective nets that last for the longest time, and estimate the optimal timing of repeated distribution campaigns. However, there is limited knowledge from few countries of the durability of LLINs under user conditions. METHODS/DESIGN: This study investigates LLIN durability in eight districts of Tanzania, selected for their demographic, geographic and ecological representativeness of the country as a whole. We use a two-stage approach: First, LLINs from recent national net campaigns will be evaluated retrospectively in 3,420 households. Those households will receive one of three leading LLIN products at random (Olyset®, PermaNet®2.0 or Netprotect®) and will be followed up for three years in a prospective study to compare their performance under user conditions. LLIN durability will be evaluated by measuring Attrition (the rate at which nets are discarded by households), Bioefficacy (the insecticidal efficacy of the nets measured by knock-down and mortality of mosquitoes), Chemical content (g/kg of insecticide available in net fibres) and physical Degradation (size and location of holes). In addition, we will extend the current national mosquito insecticide Resistance monitoring program to additional districts and use these data sets to provide GIS maps for use in health surveillance and decision making by the National Malaria Control Program (NMCP). DISCUSSION: The data will be of importance to policy makers and vector control specialists both in Tanzania and the SSA region to inform best practice for the maintenance of high and cost-effective coverage and to maximise current health gains in malaria control.


Subject(s)
Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Research Design , Family Characteristics , Humans , Insecticides/pharmacology , Malaria/epidemiology , Mosquito Control/methods , Pesticide Residues/pharmacology , Prospective Studies , Tanzania/epidemiology
9.
Parasit Vectors ; 6: 131, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23642138

ABSTRACT

BACKGROUND: Malaria control methods targeting indoor-biting mosquitoes have limited impact on vectors that feed and rest outdoors. Exploiting mosquito olfactory behaviour to reduce blood-feeding outdoors might be a sustainable approach to complement existing control strategies. Methodologies that can objectively quantify responses to odour under realistic field conditions and allow high-throughput screening of many compounds are required for development of effective odour-based control strategies. METHODS: The olfactory responses of laboratory-reared Anopheles gambiae in a semi-field tunnel and A. arabiensis females in an outdoor field setting to three stimuli, namely whole human odour, a synthetic blend of carboxylic acids plus carbon dioxide and CO(2) alone at four distances up to 100 metres were measured in two experiments using three-chambered taxis boxes that allow mosquito responses to natural or experimentally-introduced odour cues to be quantified. RESULTS: Taxis box assays could detect both activation of flight and directional mosquito movement. Significantly more (6-18%) A. arabiensis mosquitoes were attracted to natural human odour in the field up to 30 metres compared to controls, and blended synthetic human odours attracted 20% more A. gambiae in the semi-field tunnel up to 70 metres. Whereas CO(2) elicited no response in A. arabiensis in the open field, it was attractive to A. gambiae up to 50 metres (65% attraction compared to 36% in controls). CONCLUSIONS: We have developed a simple reproducible system to allow for the comparison of compounds that are active over medium- to long-ranges in semi-field or full-field environments. Knowing the natural range of attraction of anopheline mosquitoes to potential blood sources has substantial implications for the design of malaria control strategies, and adds to the understanding of olfactory behaviour in mosquitoes. This experimental strategy could also be extended from malaria vectors to other motile arthropods of medical, veterinary and agricultural significance.


Subject(s)
Anopheles/drug effects , Anopheles/physiology , Behavior, Animal/drug effects , Drug Evaluation, Preclinical/methods , Entomology/methods , Pheromones/pharmacology , Animals , Female , Locomotion , Smell/drug effects
10.
Am J Trop Med Hyg ; 83(3): 596-600, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20810826

ABSTRACT

Catches of Anopheles gambiae and An. arabiensis with the Ifakara Tent Trap-model B (ITT-B) correlate better with human landing catches than any other method but fail to reduce the proportion of blood-fed mosquito caught, which indicates that users are exposed to bites during collection. An improved C model (ITT-C) was developed and evaluated by comparing with ITT-B in semi-field and full-field conditions in southern Tanzania. The sensitivity of the ITT-C was approximately two times that of the ITT-B: relative rate (95% confidence interval) = 1.92 (1.52-2.42), 1.90 (1.48-2.43), and 2.30 (1.54-3.30) for field populations of An. arabiensis, Culex spp., and Mansonia spp., respectively. The ITT-C caught 73% less blood-fed An. arabiensis than the ITT-B in open field experiments and none in semi-field experiments, which confirmed that the C design is a safe trapping method. Validation of ITT-C by comparison with human landing catches and parasitologic measures of human infection status may be necessary to confirm that this design produces consistent and epidemiologically meaningful results.


Subject(s)
Culicidae , Animals , Humans , Insect Bites and Stings/prevention & control , Population Dynamics , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...