Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
3.
Nat Commun ; 12(1): 5558, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561429

ABSTRACT

Cardiac radiotherapy (RT) may be effective in treating heart failure (HF) patients with refractory ventricular tachycardia (VT). The previously proposed mechanism of radiation-induced fibrosis does not explain the rapidity and magnitude with which VT reduction occurs clinically. Here, we demonstrate in hearts from RT patients that radiation does not achieve transmural fibrosis within the timeframe of VT reduction. Electrophysiologic assessment of irradiated murine hearts reveals a persistent supraphysiologic electrical phenotype, mediated by increases in NaV1.5 and Cx43. By sequencing and transgenic approaches, we identify Notch signaling as a mechanistic contributor to NaV1.5 upregulation after RT. Clinically, RT was associated with increased NaV1.5 expression in 1 of 1 explanted heart. On electrocardiogram (ECG), post-RT QRS durations were shortened in 13 of 19 patients and lengthened in 5 patients. Collectively, this study provides evidence for radiation-induced reprogramming of cardiac conduction as a potential treatment strategy for arrhythmia management in VT patients.


Subject(s)
Connexin 43/genetics , Heart Conduction System/radiation effects , Heart/radiation effects , NAV1.5 Voltage-Gated Sodium Channel/genetics , Tachycardia, Ventricular/radiotherapy , Action Potentials/physiology , Action Potentials/radiation effects , Animals , Connexin 43/metabolism , Dose-Response Relationship, Radiation , Electrocardiography , Endomyocardial Fibrosis , Female , Gene Expression Regulation , Heart/physiopathology , Heart Conduction System/physiopathology , Heart Rate/physiology , Heart Rate/radiation effects , Humans , Male , Mice , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Signal Transduction , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology
4.
Circulation ; 139(3): 313-321, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30586734

ABSTRACT

BACKGROUND: Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS: We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS: Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS: Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.


Subject(s)
Action Potentials , Electrophysiologic Techniques, Cardiac , Heart Ventricles/radiation effects , Radiofrequency Ablation/methods , Radiosurgery/methods , Tachycardia, Ventricular/radiotherapy , Ventricular Premature Complexes/radiotherapy , Aged , Aged, 80 and over , Anti-Arrhythmia Agents/therapeutic use , Female , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Missouri , Predictive Value of Tests , Prospective Studies , Quality of Life , Radiofrequency Ablation/adverse effects , Radiosurgery/adverse effects , Recurrence , Risk Factors , Surveys and Questionnaires , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Time Factors , Treatment Outcome , Ventricular Premature Complexes/diagnosis , Ventricular Premature Complexes/physiopathology
5.
Neurobiol Dis ; 85: 218-224, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26563933

ABSTRACT

Physical activity has long been hypothesized to influence the risk and pathology of Alzheimer's disease. However, the amount of physical activity necessary for these benefits is unclear. We examined the effects of three months of low and high intensity exercise training on soluble Aß40 and Aß42 levels in extracellular enriched fractions from the cortex and hippocampus of young Tg2576 mice. Low (LOW) and high (HI) intensity exercise training animals ran at speeds of 15m/min on a level treadmill and 32 m/min at a 10% grade, respectively for 60 min per day, five days per week, from three to six months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. Soleus muscle citrate synthase activity increased by 39% in the LOW group relative to SED, and by 71% in the HI group relative to LOW, indicating an exercise training effect in these mice. Soluble Aß40 concentrations decreased significantly in an exercise training dose-dependent manner in the cortex. In the hippocampus, concentrations were decreased significantly in the HI group relative to LOW and SED. Soluble Aß42 levels also decreased significantly in an exercise training dose-dependent manner in both the cortex and hippocampus. Five proteins involved in Aß clearance (neprilysin, IDE, MMP9, LRP1 and HSP70) were elevated by exercise training with its intensity playing a role in each case. Our data demonstrate that exercise training reduces extracellular soluble Aß in the brains of Tg2576 mice in a dose-dependent manner through an up-regulation of Aß clearance.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Exercise Therapy/methods , Motor Activity , Peptide Fragments/metabolism , Animals , Cerebral Cortex/metabolism , Citrate (si)-Synthase/metabolism , Disease Models, Animal , HSP70 Heat-Shock Proteins/metabolism , Hippocampus/drug effects , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Matrix Metalloproteinase 9/metabolism , Mice, Transgenic , Muscle, Skeletal/metabolism , Neprilysin/metabolism , RNA, Messenger/metabolism , Random Allocation , Receptors, LDL/metabolism , Treatment Outcome , Tumor Suppressor Proteins/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...