Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arch Dermatol Res ; 316(6): 312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822924

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with high rates of metastasis and mortality. In vitro studies suggest that selinexor (KPT-330), an inhibitor of exportin 1, may be a targeted therapeutic option for MCC. This selective inhibitor prevents the transport of oncogenic mRNA out of the nucleus. Of note, 80% of MCC tumors are integrated with Merkel cell polyomavirus (MCPyV), and virally encoded tumor-antigens, small T (sT) and large T (LT) mRNAs may require an exportin transporter to relocate to the cytoplasm and modulate host tumor-suppressing pathways. To explore selinexor as a targeted therapy for MCC, we examine its ability to inhibit LT and sT antigen expression in vitro and its impact on the prostaglandin synthesis pathway. Protein expression was determined through immunoblotting and quantified by densitometric analysis. Statistical significance was determined with t-test. Treatment of MCPyV-infected cell lines with selinexor resulted in a significant dose-dependent downregulation of key mediators of the prostaglandin synthesis pathway. Given the role of prostaglandin synthesis pathway in MCC, our findings suggest that selinexor, alone or in combination with immunotherapy, could be a promising treatment for MCPyV-infected MCC patients who are resistant to chemotherapy and immunotherapy.


Subject(s)
Carcinoma, Merkel Cell , Hydrazines , Skin Neoplasms , Triazoles , Hydrazines/pharmacology , Hydrazines/therapeutic use , Humans , Carcinoma, Merkel Cell/virology , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/pathology , Triazoles/pharmacology , Triazoles/therapeutic use , Skin Neoplasms/drug therapy , Skin Neoplasms/virology , Skin Neoplasms/pathology , Cell Line, Tumor , Prostaglandins/metabolism , Merkel cell polyomavirus , Exportin 1 Protein , Karyopherins/metabolism , Karyopherins/antagonists & inhibitors , Antigens, Viral, Tumor , Receptors, Cytoplasmic and Nuclear/metabolism
4.
Clin Exp Dermatol ; 48(8): 903-908, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37191210

ABSTRACT

BACKGROUND: Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine cutaneous carcinoma aetiologically linked to the Merkel cell polyomavirus (MCPyV). Immune checkpoint inhibitors are currently the first-line therapy for metastatic MCC; however, the treatment is effective in only about half of patients, highlighting the need for alternative therapies. Selinexor (KPT-330) is a selective inhibitor of nuclear exportin 1 (XPO1) and has been shown to inhibit MCC cell growth in vitro, but the pathogenesis has not been established. Decades of research have established that cancer cells significantly upregulate lipogenesis to meet an increased demand for fatty acids and cholesterol. Treatments that inhibit lipogenic pathways may halt cancer cell proliferation. AIM: To determine the effect of increasing doses of selinexor on fatty acid and cholesterol synthesis in MCPyV-positive MCC (MCCP) cell lines and aid in elucidating the mechanism by which selinexor prevents and reduces MCC growth. METHODS: MKL-1 and MS-1 cell lines were treated with increasing doses of selinexor for 72 h. Protein expression quantification was determined using chemiluminescent Western immunoblotting and densitometric analysis. Fatty acids and cholesterol were quantified using free fatty acid assay and cholesterol ester detection kits. RESULTS: Selinexor causes statistically significant reductions of the lipogenic transcription factors sterol regulatory element-binding proteins 1 and 2, and lipogenic enzymes acetyl-CoA carboxylase, fatty acid synthase, squalene synthase and 3ß-hydroxysterol Δ-24-reductase in a dose-dependent manner in two MCCP cell lines. Although inhibiting the fatty acid synthesis pathway results in meaningful decreases in fatty acids, the cellular cholesterol levels did not demonstrate such reductions. CONCLUSION: For patients with metastatic MCC refractory to immune checkpoint inhibitors, selinexor may provide clinical benefit through the inhibition of the lipogenesis pathway; however, further research and clinical trials are needed to evaluate these findings.


Subject(s)
Carcinoma, Merkel Cell , Skin Neoplasms , Humans , Carcinoma, Merkel Cell/pathology , Immune Checkpoint Inhibitors , Lipogenesis , Cell Line , Skin Neoplasms/pathology , Fatty Acids
5.
Int J Dermatol ; 62(3): 387-396, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36577746

ABSTRACT

Since Merkel cell polyomavirus (MCPyV) was linked as the predominant etiology of Merkel cell carcinoma (MCC) in 2008, three additional human polyomaviruses (HPyV) have been definitively linked to cutaneous diseases-trichodysplasia spinulosa virus (TSPyV) and human polyomavirus 6 and 7 (HPyV6, HPyV7). TSPyV contributes to the development of trichodysplasia spinulosa (TS), and HPyV6/7 is associated closely with the eruption of pruritic and dyskeratotic dermatoses (PDD). Clinically, MCC is treated with surgical excision and radiation with adjuvant chemotherapy, although newer treatment options include immune checkpoint inhibition. These novel immunotherapies hold promise for the treatment of metastatic MCC, but resistance and side effects prevent a significant proportion of patients from realizing their benefits. Based on previous case reports, the standard of care for the less deadly but disfiguring cutaneous disease TS include immunosuppressant (IS) reduction, the use of antivirals such as cidofovir (CDV) or valganciclovir (VGCV), or a combination of these treatments. Similar treatments were attempted for PDD, but oral acitretin was found to be most effective. As MCC, TS, and PDD are rare diseases, further research is required for effective treatments. In this review, we summarize clinical trials, preclinical studies, and case reports that present outcomes and side effects of current and emerging treatments for HPyV-associated cutaneous diseases, offering a comprehensive resource for clinical application and prospective clinical trials.


Subject(s)
Carcinoma, Merkel Cell , Polyomavirus Infections , Polyomavirus , Skin Diseases , Skin Neoplasms , Humans , Prospective Studies
6.
J Cancer Res Clin Oncol ; 149(5): 2139-2155, 2023 May.
Article in English | MEDLINE | ID: mdl-35941226

ABSTRACT

PURPOSE: Selinexor is a novel XPO1 inhibitor which inhibits the export of tumor suppressor proteins and oncoprotein mRNAs, leading to cell-cycle arrest and apoptosis in cancer cells. While selinexor is currently FDA approved to treat multiple myeloma, compelling preclinical and early clinical studies reveal selinexor's efficacy in treating hematologic and non-hematologic malignancies, including sarcoma, gastric, bladder, prostate, breast, ovarian, skin, lung, and brain cancers. Current reviews of selinexor primarily highlight its use in hematologic malignancies; however, this review seeks to summarize the recent evidence of selinexor treatment in solid tumors. METHODS: Pertinent literature searches in PubMed and the Karyopharm Therapeutics website for selinexor and non-hematologic malignancies preclinical and clinical trials. RESULTS: This review provides evidence that selinexor is a promising agent used alone or in combination with other anticancer medications in non-hematologic malignancies. CONCLUSION: Further clinical investigation of selinexor treatment for solid malignancies is warranted.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Male , Humans , Karyopherins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Triazoles/pharmacology , Triazoles/therapeutic use , Hydrazines/pharmacology , Hydrazines/therapeutic use , Multiple Myeloma/drug therapy , Active Transport, Cell Nucleus , Cell Line, Tumor
9.
Virus Genes ; 58(1): 35-41, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35000075

ABSTRACT

TSPyV is a viral agent linked to Trichodysplasia spinulosa, a disfiguring human skin disease which presents with hyperkeratotic spicule eruption in immunocompromised hosts. This proliferative disease state requires extensive modulation of the host cell environment. While the small T (sT) antigen of TSPyV has been postulated to cause widespread cellular perturbation, its specific substrates and their mechanistic connection are unclear. To identify the cellular substrates and pathways perturbed by TSPyV sT and propose a nuanced model that reconciles the multiple arms of TSPyV pathogenesis, changes in expression of several proteins and phospho-proteins in TSPyV sT expressing and TSPyV sT deletion mutant-expressing cell lysates were interrogated using Western blot assays. TSPyV sT expression exploits the DNA damage response pathway, by inducing hyperphosphorylation of ATM and 53BP1 and upregulation of BMI-1. Concurrently, sT dysregulates the S6 protein translation pathway via hyperphosphorylation of CDC2, p70 S6 kinase, S6, and PP1α. The S6S244/247 and p-PP1αT320 phospho-forms are points of overlap between the DDR and S6 networks. We propose a mechanistic rationale for previous reports positioning sT antigen as the key driver of TSPyV pathogenesis. We illuminate novel targets in the S6 and DDR pathways and recognize a potential synergy between these pathways. TSPyV may sensitize the cell to both unrestricted translation and genomic instability. This multi-pronged infection model may inform future therapeutic modalities against TSPyV and possibly other viruses with overlapping host substrates.


Subject(s)
Polyomavirus Infections , Polyomavirus , Antigens, Viral, Tumor/genetics , DNA Damage , Humans , Polyomavirus/genetics , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...