Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(6): 2945-2953, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38279200

ABSTRACT

Metal complexes with unpaired electrons in orbitals of different angular momentum quantum numbers (e.g., f and d orbitals) are unusual and opportunities to study the interactions among these electrons are rare. X-band electron paramagnetic resonance (EPR) data were collected at <10 and 77 K on 10 U(II) complexes with 5f36d1 electron configurations and on some analogous Ce(II), Pr(II), and Nd(II) complexes with 4fn5d1 electron configurations. The U(II) compounds unexpectedly display similar two-line axial signals with g|| = 2.04 and g⊥ = 2.00 at 77 K. In contrast, U(II) complexes with 5f4 configurations are EPR-silent. Unlike U(II), the congenic 4f35d1 Nd(II) complex is EPR-silent. The Ce(II) complex with a 4f15d1 configuration is also EPR-silent, but a signal is observed for the Pr(II) complex, which has a 4f25d1 configuration. Whether or not an EPR signal is expected for these complexes depends on the coupling between f and d electrons. Since the coupling in U(II) systems is expected to be sufficiently strong to preclude an EPR signal from compounds with a 5f36d1 configuration, the results are viewed as unexplained phenomena. However, they do show that 5f36d1 U(II) samples can be differentiated from 5f4 U(II) complexes by EPR spectroscopy.

2.
Inorg Chem ; 62(14): 5854-5862, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36988455

ABSTRACT

The high reactivity accessible from the reduction of the tris(amide) complexes Ln(NR2)3 (R = SiMe3) with potassium graphite in the presence of a variety of ethers is demonstrated by crystal structures of six different types of products of C-O bond cleavage reactions with Ln = Y, Ho, Er, and Lu. Specifically, 1,2-dimethoxyethane (DME) can be cleaved in Ln(NR2)3/KC8 reactions as shown by three different types of crystals: [K (crypt)][(R2N)3Y(OCH2CH2OCH3)], 1-Y, [(R2N)2Y(µ-OCH2CH2OCH3-κO,κO')]2, 2-Y, and [K2(18-c-6)3]{[(R2N)3Lu]2[(µ-OCH2CH2O)]}, 3-Lu (18-c-6 = 18-crown-6; crypt = 2.2.2-cryptand). THF can be ring opened by the Y(NR2)3/KC8 reaction system, as shown by crystals of the butoxide, [K(crypt)][(R2N)3Y(OCH2CH2CH2CH3)], 4-Y. The cyclic ether, oxetane, OC3H6, ring opens in Ln(NR2)3/KC8 reactions to form crystals of the propoxide, [K(18-c-6)(OC3H6)][(R2N)3Ln(OCH2CH2CH3)], 5-Ln, for Ln = Ho and Er. In Et2O, the Y(NR2)3/KC8 reactions do not attack the solvent, but C-O cleavage of 18-c-6 is observed to form {[(R2N)2]Y[µ-η1:η1-O2(C10H20O4)K]}2, 6-Y. These Ln(NR2)3/KC8 C-O cleavage reactions are typically accompanied by C-H bond activation reactions, which form cyclometalates such as [K(crypt)]{(R2N)2Ln[N(SiMe3)(SiMe2CH2)-κC,κN]}, 7-Ln (Ln = Y, Ho, Er), and [K(18-c-6)]{(R2N)2Y[N(SiMe3)(SiMe2CH2)-κC,κN]}, 8-Y, which are common decomposition products of Ln(NR2)3 reactions. In addition, in this study, the hydride complex, [K(18-c-6)][(R2N)3YH], 9-Y, was isolated. NMR analysis indicates that the yttrium reactions form mixtures that consistently contain the yttrium cyclometalates 7-Y and 8-Y as major components. These results show the diversity of available reaction pathways for the Ln(NR2)3/KC8 system and highlight the inherent difficulties in isolating Ln(II) complexes containing the [Ln(NR2)3]1- anion.

3.
Inorg Chem ; 61(44): 17713-17718, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36282945

ABSTRACT

The utility of γ irradiation for generating unstable, low oxidation state molecular species containing rare-earth metal ions in frozen solution has been examined. The method was evaluated by irradiating Ln(III) precursors (Ln = Sc, Y, and La) in a solid matrix of 2-methyltetrahydrofuran at 77 K with a 700 keV 137Cs source to generate free electrons capable of reducing the Ln(III) species. These experiments yielded EPR and UV-visible spectroscopic data that matched those of the known Ln(II) species [(C5H4SiMe3)3YII]1-, [(C5H4SiMe3)3LaII]1-, and {ScII[N(SiMe3)2]3}1-. Irradiation of the La(III) complex LaIII[N(SiMe3)2]3 by this method gave EPR and UV-visible absorption spectra consistent with {LaII[N(SiMe3)2]3}1-, a species that had previously eluded preparation by chemical reduction. Specifically, the irradiation product exhibited an axial EPR spectrum split into eight lines by the I = 7/2 139La nucleus (g⊥ = 1.98, g|| = 2.06, Aave = 519.1 G). The UV-visible absorption spectrum contains broad bands centered at 390 and 670 nm that are consistent with a La(II) ion in a trigonal ligand environment based on time-dependent density functional theory which qualitatively reproduces the observed spectrum. Additionally, the rate of formation of the [(C5H4SiMe3)3YII]1- species during the irradiation of (C5H4SiMe3)3YIII was monitored by measuring the concentration via UV-visible spectroscopy over time to provide data on the rate at which a molecular species is reduced in a glass via γ irradiation.


Subject(s)
Coordination Complexes , Metals, Rare Earth , Models, Molecular , Ligands , Ions/chemistry
4.
Inorg Chem ; 59(4): 2178-2187, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31990533

ABSTRACT

Manganese tricarbonyl complexes are promising catalysts for CO2 reduction, but complexes in this family are often photosensitive and decompose rapidly upon exposure to visible light. In this report, synthetic and photochemical studies probe the initial steps of light-driven speciation for Mn(CO)3(Rbpy)Br complexes bearing a range of 4,4'-disubstituted 2,2'-bipyridyl ligands (Rbpy, where R = tBu, H, CF3, NO2). Transient absorption spectroscopy measurements for Mn(CO)3(Rbpy)Br coordination compounds with R = tBu, H, and CF3 in acetonitrile reveal ultrafast loss of a CO ligand on the femtosecond time scale, followed by solvent coordination on the picosecond time scale. The Mn(CO)3(NO2bpy)Br complex is unique among the four compounds in having a longer-lived excited state that does not undergo CO release or subsequent solvent coordination. The kinetics of photolysis and solvent coordination for light-sensitive complexes depend on the electronic properties of the disubstituted bipyridyl ligand. The results indicate that both metal-to-ligand charge-transfer (MLCT) and dissociative ligand-field (d-d) excited states play a role in the ultrafast photochemistry. Taken together, the findings suggest that more robust catalysts could be prepared with appropriately designed complexes that avoid crossing between the excited states that drive photochemical CO loss.

5.
Molecules ; 23(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400193

ABSTRACT

[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) are attracting renewed interest in coordination chemistry and catalysis, but these useful compounds often undergo net two-electron redox cycling that precludes observation of individual one-electron reduction events. Here, we show that a [Cp*Rh] complex bearing the 4,4'-dinitro-2,2'-bipyridyl ligand (dnbpy) (3) can access a distinctive manifold of five oxidation states in organic electrolytes, contrasting with prior work that found no accessible reductions in aqueous electrolyte. These states are readily generated from a newly isolated and fully characterized rhodium(III) precursor complex 3, formulated as [Cp*Rh(dnbpy)Cl]PF6. Single-crystal X-ray diffraction (XRD) data, previously unavailable for the dnbpy ligand bound to the [Cp*Rh] platform, confirm the presence of both [η5-Cp*] and [κ²-dnbpy]. Four individual one-electron reductions of 3 are observed, contrasting sharply with the single two-electron reductions of other [Cp*Rh] complexes. Chemical preparation and the study of the singly reduced species with electronic absorption and electron paramagnetic resonance spectroscopies indicate that the first reduction is predominantly centered on the dnbpy ligand. Comparative cyclic voltammetry studies with [NBu4][PF6] and [NBu4][Cl] as supporting electrolytes indicate that the chloride ligand can be lost from 3 by ligand exchange upon reduction. Spectroelectrochemical studies with ultraviolet (UV)-visible detection reveal isosbestic behavior, confirming the clean interconversion of the reduced forms of 3 inferred from the voltammetry with [NBu4][PF6] as supporting electrolyte. Electrochemical reduction in the presence of triethylammonium results in an irreversible response, but does not give rise to catalytic H2 evolution, contrasting with the reactivity patterns observed in [Cp*Rh] complexes bearing bipyridyl ligands with less electron-withdrawing substituents.


Subject(s)
2,2'-Dipyridyl/chemistry , Cycloparaffins/chemistry , Nitro Compounds/chemistry , Rhodium/chemistry , Electrochemistry , X-Ray Diffraction
6.
ChemSusChem ; 10(22): 4589-4598, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29024563

ABSTRACT

We demonstrate that [Cp*Rh] complexes bearing substituted 2,2'-bipyridyl ligands are effective hydrogen evolution catalysts (Cp*=η5 -pentamethylcyclopentadienyl). Disubstitution (at the 4 and 4' positions) of the bipyridyl ligand (namely -tBu, -H, and -CF3 ) modulates the catalytic overpotential, in part due to involvement of the reduced ligand character in formally rhodium(I) intermediates. These reduced species are synthesized and isolated here; protonation results in formation of complexes bearing the unusual η4 -pentamethylcyclopentadiene ligand, and the properties of these protonated intermediates further govern the catalytic performance. Electrochemical studies suggest that multiple mechanistic pathways are accessible, and that the operative pathway depends on the applied potential and solution conditions. Taken together, these results suggest synergy in metal-ligand cooperation that modulates the mechanisms of fuel-forming catalysis with organometallic compounds bearing multiple non-innocent ligands.


Subject(s)
Hydrogen/chemistry , Rhodium/chemistry , 2,2'-Dipyridyl/chemistry , Catalysis , Electrochemical Techniques , Energy-Generating Resources , Ligands , Organometallic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...