Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 165: 112011, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382174

ABSTRACT

Prior studies suggest that native (born to at least one deaf or signing parent) and non-native signers have different musculoskeletal health outcomes from signing, but the individual and combined biomechanical factors driving these differences are not fully understood. Such group differences in signing may be explained by the five biomechanical factors of American Sign Language that have been previously identified: ballistic signing, hand and wrist deviations, work envelope, muscle tension, and "micro" rests. Prior work used motion capture and surface electromyography to collect joint kinematics and muscle activations, respectively, from ten native and thirteen non-native signers as they signed for 7.5 min. Each factor was individually compared between groups. A factor analysis was used to determine the relative contributions of each biomechanical factor between signing groups. No significant differences were found between groups for ballistic signing, hand and wrist deviations, work envelope volume, excursions from recommended work envelope, muscle tension, or "micro" rests. Factor analysis revealed that "micro" rests had the strongest contribution for both groups, while hand and wrist deviations had the weakest contribution. Muscle tension and work envelope had stronger contributions for native compared to non-native signers, while ballistic signing had a stronger contribution for non-native compared to native signers. Using a factor analysis enabled discernment of relative contributions of biomechanical variables across native and non-native signers that could not be detected through isolated analysis of individual measures. Differences in the contributions of these factors may help explain the differences in signing across native and non-native signers.


Subject(s)
Hand , Sign Language , Humans , United States , Upper Extremity , Wrist , Factor Analysis, Statistical
2.
Clin Biomech (Bristol, Avon) ; 100: 105799, 2022 12.
Article in English | MEDLINE | ID: mdl-36265254

ABSTRACT

BACKGROUND: Rotator cuff tears are common in older adults, negatively affecting function. Previous simulation-based studies reported more posterior and superior oriented glenohumeral loading with increased cuff tear severity and task performance, although corresponding muscle compensation strategies are unclear. Our objective is to determine how shoulder muscle forces change with increased rotator cuff tear severity during functional task performance. METHODS: Eight musculoskeletal models of increasing tear severity were developed to represent no rotator cuff tear to massive three-tendon tears. Simulations were performed using each combination of model and kinematics for five functional tasks. Individual muscle forces were averaged for each task and tear severity, then normalized by the sum of the muscle forces across the shoulder. Forces were compared across tear severity and muscle. FINDINGS: For muscle force contribution, interactions between tear severity and muscle and a main effect of muscle were seen for all tasks (P < 0.0001). Middle deltoid increased force contribution by >10% in the greatest tear severity model compared to no cuff tear model for all tasks (all P < 0.0001). Teres minor contribution increased by 7.7%, 5.6%, and 11% in the greatest tear severity model compared to the no cuff tear model for forward reach, axilla wash, and upward reach 105° tasks, respectively (all P < 0.0001). INTERPRETATION: Functional tasks elicit compensatory responses from uninjured muscles following severe cuff tears, notably in middle deltoid and teres minor, leading to posterior-superior glenohumeral loading. The muscles are potential targets for strengthening to avoid injury from sustained increased muscle force.


Subject(s)
Rotator Cuff , Humans , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...