Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1609: 460429, 2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31431354

ABSTRACT

Three different applications of travelling heating zone reactor (THZR) chromatography for the downstream processing of monoclonal antibodies (mAbs) are described. mAb containing feedstocks were applied to a fixed bed of the thermoresponsive rProtein A matrix, Byzen Pro™, contained in a bespoke column (held at 15 °C) fitted with a travelling heating (42 °C) device encircling a narrow section of the column. For the demonstration of continuous concentration, uninterrupted loading of 1.0 g/L mAb in a pH 8 binding buffer was synchronized with 5 repeated movements of the heating zone along the column's full length at a velocity of 0.1 mm/s. Elution of mAbs was induced solely by the travelling heating zone's action, each full movement generating a sharp concentrated elution peak accompanied by a small transient mAb concentration-dependent dip in conductivity. Quasi-steady-state operation occurred from the third elution onwards, delivering a mean mAb concentration of 4.9 g/L and process yield >93%. Quasi-continuous separation of the target mAb (1.41 g/L) from bovine serum albumin, BSA (1.0 g/L), was achieved by cyclically alternating the feeding of the mAb + BSA feedstock, with that of the binding buffer alone; supply of the latter was timed to coincide with movement of the heating zone. Accurate coordination of the heating zone's travel and switching from feed to buffer permitted quasi-steady-state collection (elutions 3-6) of sharp peaks of mAb in high purity (98.7%) and yield (88.7%) in 4.5-fold concentrated form, with BSA exiting in the flow through fractions between successive mAb elution peaks. Fully automated THZR-mediated quasi-continuous buffer exchange of 1.34 g/L mAb from a phosphate buffer pH 8 into a HEPES buffer pH 8 of slightly lower conductivity was performed over a 19 h period by carefully timed switching from one feed solution to the other and back again, whilst synchronising movement of the heating zone with feeding of the exchange buffer. Quasi-steady-state operation (elutions 2-9) resulted in an average eluted mAb yield of 94.5% and concentration of 4.8 g/L. Triggering movement of the heating zone slightly ahead of the switch from mAb feed to exchange buffer permitted the positioning of mAb elution peaks in 9 mL volume segments with the lowest recorded conductivity. Measurements of buffer exchange performance conducted with two 'protein-free' systems demonstrated that compared to tangential flow filtration in diafiltration mode, which represents the 'state-of-the-art' technology for buffer exchange, the THZR chromatography based approach affords a >60% saving in minimum volume of exchange buffer required to remove 99.9% of the original buffer. Combined far and near UV circular dichroism, intrinsic fluorescence and thermal melting experiments showed that, unlike conventional Protein A/G affinity chromatography, the conditions for THZR Protein A chromatography respect maintenance of a favourable structural profile for mAbs.


Subject(s)
Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Staphylococcal Protein A/analysis , Temperature , Buffers , Chromatography, Ion Exchange/methods , Circular Dichroism , Electric Conductivity , Hot Temperature , Protein Stability
2.
Anal Chem ; 91(21): 13794-13802, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31584804

ABSTRACT

Assessing the physical stability of proteins is one of the most important challenges in the development, manufacture, and formulation of biotherapeutics. Here, we describe a method for combining and automating circular dichroism and intrinsic protein fluorescence spectroscopy. By robotically injecting samples from a 96-well plate into an optically compliant capillary flow cell, complementary information about the secondary and tertiary structural state of a protein can be collected in an unattended manner from considerably reduced volumes of sample compared to conventional techniques. We demonstrate the accuracy and reproducibility of this method. Furthermore, we show how structural screening can be used to monitor unfolding of proteins in two case studies using (i) a chaotropic denaturant (urea) and (ii) low-pH buffers used for monoclonal antibody (mAb) purification during Protein A chromatography.


Subject(s)
Automation , Circular Dichroism/methods , Protein Conformation , Spectrometry, Fluorescence/methods , Circular Dichroism/instrumentation , Hydrogen-Ion Concentration , Protein Denaturation/drug effects , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Reproducibility of Results , Urea/pharmacology
3.
Bioconjug Chem ; 29(6): 1872-1875, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29800521

ABSTRACT

Over the past ten years there has been increasing interest in the conjugation of exogenous compounds to the surface of the M13 bacteriophage. M13 offers a convenient scaffold for the development of nanoassemblies with useful functions, such as highly specific drug delivery and pathogen detection. However, the progress of these technologies has been hindered by the limited efficiency of conjugation to the bacteriophage. Here we generate a mutant version of M13 with an additional lysine residue expressed on the outer surface of the M13 major coat protein, pVIII. We show that this mutation is accommodated by the bacteriophage and that up to an additional 520 exogenous groups can be attached to the bacteriophage surface via amine-directed conjugation. These results could aid the development of high payload drug delivery nanoassemblies and pathogen detection systems with increased sensitivity.


Subject(s)
Amines/chemistry , Bacteriophage M13/chemistry , Bacteriophage M13/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Amination , Amino Acid Sequence , Chemistry Techniques, Synthetic , Lysine/chemistry , Lysine/genetics , Mutation
4.
RSC Adv ; 8(52): 29535-29543, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30713683

ABSTRACT

It is a challenge within the field of biomimetics to recreate the properties of light-harvesting antennae found in plants and photosynthetic bacteria. Attempts to recreate these biological structures typically rely on the alignment of fluorescent moieties via attachment to an inert linear scaffold, e.g. DNA, RNA or amyloid fibrils, to enable Förster resonance energy transfer (FRET) between attached chromophores. While there has been some success in this approach, refinement of the alignment of the chromophores is often limited, which may limit the efficiency of energy transfer achieved. Here we demonstrate how linear dichroism spectroscopy may be used to ascertain the overall alignment of chromophores bound to the M13 bacteriophage, a model linear scaffold, and demonstrate how this may be used to distinguish between lack of FRET efficiency due to chromophore separation, and chromophore misalignment. This approach will allow the refinement of artificial light-harvesting antennae in a directed fashion.

5.
Biochem J ; 473(23): 4349-4360, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27694389

ABSTRACT

The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.


Subject(s)
Maleates/chemistry , Membrane Proteins/chemistry , Membrane Proteins/isolation & purification , Polystyrenes/chemistry , Carrier Proteins/chemistry , Carrier Proteins/isolation & purification , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/isolation & purification , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...