Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35447723

ABSTRACT

Healthcare applications are known to have a considerable environmental impact and the use of bio-based polymers has emerged as a powerful approach to reduce the carbon footprint in the sector. This research aims to explore the suitability of using a new sustainable polyester blend (Floreon™) as a scaffold directed to aid in musculoskeletal applications. Musculoskeletal problems arise from a wide range of diseases and injuries related to bones and joints. Specifically, bone injuries may result from trauma, cancer, or long-term infections and they are currently considered a major global problem in both developed and developing countries. In this work we have manufactured a series of 3D-printed constructs from a novel biopolymer blend using fused deposition modelling (FDM), and we have modified these materials using a bioceramic (wollastonite, 15% w/w). We have evaluated their performance in vitro using human dermal fibroblasts and rat mesenchymal stromal cells. The new sustainable blend is biocompatible, showing no differences in cell metabolic activity when compared to PLA controls for periods 1-18 days. FloreonTM blend has proven to be a promising material to be used in bone tissue regeneration as it shows an impact strength in the same range of that shown by native bone (just under 10 kJ/m2) and supports an improvement in osteogenic activity when modified with wollastonite.

2.
J Prosthet Dent ; 124(2): 230-236, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31759562

ABSTRACT

STATEMENT OF PROBLEM: The current chemical solubility method in the International Standards Organization (ISO) 6872 (2015) specifies only the total surface area of specimens for testing (≥30 cm2) but does not describe the morphology or geometry. This could impact the reproducibility of the test outcomes. PURPOSE: The purpose of this in vitro study was to investigate the factors influencing the reliability of the ISO 6872:2015 "Dentistry-Ceramic materials" test for chemical solubility. MATERIAL AND METHODS: Chemical solubility analysis of a range of materials and specimen geometries was performed in accordance with ISO 6872:2015. Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), VITABLOCS Mark II, IPS e.max Press, and IPS e.max ZirPress materials were formed into a range of cubic and spherical geometries to comply with the 30-cm2 minimum surface area requirement. The surface microstructure of the specimens was analyzed using a scanning electron microscope, inductively coupled plasma optical emission spectrometry (ICP-OES) was used to analyze the solutes, and surface hardness of the specimens was measured by using a Vickers hardness tester before and after testing. An optimized solubility test was devised, which eliminated specimen handling once the specimens had been ground and polished. This modified test was performed on VITABLOCS Mark II and Y-TZP. RESULTS: The results of the original chemical solubility method of ISO 6872:2015 showed significantly variable findings for each tested material, with a predictable relationship between geometry and chemical solubility. The hardness values decreased significantly after the solubility testing. The optimized method showed significantly improved reproducibility of the chemical solubility measurement compared with the original ISO 6872:2015 test. CONCLUSIONS: The results of the current chemical solubility standard method can be manipulated while still complying with the ISO 6872:2015 standard.


Subject(s)
Dental Porcelain , Zirconium , Ceramics , Dental Stress Analysis , Gas Chromatography-Mass Spectrometry , Materials Testing , Reproducibility of Results , Solubility , Surface Properties , Yttrium
SELECTION OF CITATIONS
SEARCH DETAIL
...