Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474128

ABSTRACT

A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years). We characterized baseline differences as well as acute exercise-induced transcriptome responses in vastus lateralis biopsy specimens of endurance-trained athletes (ET; n = 8; VO2max, 67.2 ± 8.9 mL/min/kg) and sedentary healthy volunteers (SED; n = 8; VO2max, 40.3 ± 7.6 mL/min/kg) using microarray technology. A second cohort of SED volunteers (SED-T; n = 10) followed an 8-week endurance training program to assess expression changes of selected marker genes in the course of skeletal muscle adaptation. We deciphered differential baseline signatures that reflected major differences in the oxidative and metabolic capacity of the endurance-trained and untrained muscles. SED-T individuals in the training group displayed an up-regulation of nodal regulators of oxidative adaptation after 3 weeks of training and a significant shift toward the ET signature after 8 weeks. Transcriptome changes provoked by 1 h of intense cycling exercise only poorly overlapped with the genes that constituted the differential baseline signature of ETs and SEDs. Overall, acute exercise-induced transcriptional responses were connected to pathways of contractile, oxidative, and inflammatory stress and revealed a complex and highly regulated framework of interwoven signaling cascades to cope with exercise-provoked homeostatic challenges. While temporal transcriptional programs that were activated in SEDs and ETs were quite similar, the quantitative divergence in the acute response transcriptomes implicated divergent kinetics of gene induction and repression following an acute bout of exercise. Together, our results provide an extensive examination of the transcriptional framework that underlies skeletal muscle plasticity.


Subject(s)
Endurance Training , Transcriptome , Male , Young Adult , Humans , Physical Endurance/physiology , Muscle, Skeletal/metabolism , Exercise/physiology
4.
J Clin Med ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959205

ABSTRACT

INTRODUCTION: Post-COVID-19 syndrome (PCS) is a multisystemic disorder marked by impaired physical performance as one lead symptom. Since it has been suggested that endurance training as part of medical rehabilitation may be effective in improving physical performance capacity in PCS, this study aimed to compare different modes of aerobic endurance training. METHODS: A total of 110 PCS patients (49.3 ± 11.8 years; 38% women; time after infection = 260.2 ± 127.5 days) underwent detailed clinical screening including symptom-limited cardiopulmonary exercise testing at admission and after 4-6 weeks of inpatient medical rehabilitation. Questionnaires were used to assess disease perception. Patients performed controlled isocaloric cycle ergometer training (3-5 sessions/week; 18 min) as either continuous training (CT) at 50% of maximal workload or as interval training (IT; load = 60%, relief = 30%). Outcomes of PCS patients were compared to coronary artery disease patients (CAD; n = 96) to evaluate overall training effectiveness. RESULTS: Training participation was comparable between the groups, with no indication of training-specific exercise-induced fatigue. Overall, PCS patients improved significantly by a mean of 6.8 ± 12.1% for W at VT1; 3.1 ± 10.0% for VO2 at VT1; 5.5 ± 14.7% for O2 pulse at VT1; 7.5 ± 15.0% for W at VO2peak; 2.7 ± 11.0% for VO2peak and 4.6 ± 12.4% for O2 pulse at VO2peak (all p < 0.05) with no significant differences between groups (p > 0.05). Both groups showed reduced levels of fatigue, anxiety, and depression as well as improved quality of life and wellbeing (all p < 0.05). Compared to guideline-based cardiac rehabilitation, PCS patients showed a similar improvement in workload and oxygen uptake compared to CAD patients. CONCLUSION: PCS patients benefit from aerobic endurance training performed as moderate continuous or interval training as part of a medical rehabilitation program in terms of improved physical exercise capacity and disease perception. The results for PCS patients are comparable to the guideline-based rehabilitation of CAD patients.

5.
J Sport Health Sci ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37925072

ABSTRACT

Regular physical exercise has been recognized as a potent modulator of immune function, with its effects including enhanced immune surveillance, reduced inflammation, and improved overall health. While strong evidence exists that physical exercise affects the specific expression and activity of non-coding RNAs (ncRNAs) also involved in immune system regulation, heterogeneity in individual study designs and analyzed exercise protocols exists, and a condensed list of functional, exercise-dependent ncRNAs with known targets in the immune system is missing from the literature. A systematic review and qualitative analysis was used to identify and categorize ncRNAs participating in immune modulation by physical exercise. Two combined approaches were used: (a) a systematic literature search for "ncRNA and exercise immunology", (b) and a database search for microRNAs (miRNAs) (miRTarBase and DIANA-Tarbase v8) aligned with known target genes in the immune system based on the Reactome database, combined with a systematic literature search for "ncRNA and exercise". Literature searches were based on PubMed, Web of Science, and SPORTdiscus; and miRNA databases were filtered for targets validated by in vitro experimental data. Studies were eligible if they reported on exercise-based interventions in healthy humans. After duplicate removal, 95 studies were included reporting on 164 miRNAs, which were used for the qualitative synthesis. Six studies reporting on long-noncoding RNAs (lncRNAs) or circular RNAs were also identified. Results were analyzed using ordering tables that included exercise modality (endurance/ resistance exercise), acute or chronic interventions, as well as the consistency in reported change between studies. Evaluation criteria were defined as "validated" with 100% of ≥3 independent studies showing identical direction of regulation, "plausible" (≥80%), or "suggestive" (≥70%). For resistance exercise, upregulation of miR-206 was validated while downregulation of miR-133a appeared plausible. For endurance exercise, 15 miRNAs were categorized as validated, with 12 miRNAs being consistently elevated and 3 miRNAs being downregulated, most of them after acute exercise training. In conclusion, our approach provides evidence that miRNAs play a major role in exercise-induced effects on the innate and adaptive immune system by targeting different pathways affecting immune cell distribution, function, and trafficking as well as production of (anti-)inflammatory cytokines. miRNAs miR-15, miR-29c, miR-30a, miR-142/3, miR-181a, and miR-338 emerged as key players in mediating the immunomodulatory effects of exercise predominantly after acute bouts of endurance exercise.

6.
Sci Rep ; 13(1): 15814, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739977

ABSTRACT

Post-COVID-19 Syndrome (PCS) is a condition with multiple symptoms partly related to dysregulation of the autonomic nerve system. Assessment of heart rate variability (HRV) using 24 h Holter-ECG may serve as a surrogate to characterize cardiac autonomic activity. A prospective study including 103 PCS patients (time after infection = 252 days, age = 49.0 ± 11.3 years, 45.7% women) was performed and patients underwent detailed clinical screening, cardiopulmonary exercise testing, and 24 h Holter monitoring. Data of PCS patients was compared to 103 CAD patients and a healthy control group (n = 90). After correction for age and sex, frequency-related variables differed in PCS patients compared to controls including LF/HFpower, LF/HFnu, and LF/HF ratio (24 h; p ≤ 0.001). By contrast, these variables were largely comparable between PCS and CAD patients, while sympathetic activation was highest in PCS patients during the 24 h period. Overall, PCS patients showed disturbed diurnal adjustment of HRV, with impaired parasympathetic activity at night. Patients hospitalized during acute infection showed an even more pronounced overactivation of sympathetic activity compared to patients who underwent ambulant care. Our data demonstrate persistent HRV alterations in PCS patients with long-term symptom duration, suggesting a sustained impairment of sympathovagal balance. Moreover, sympathetic overstimulation and diminished parasympathetic response in long-term PCS patients are comparable to findings in CAD patients. Whether HRV variables have a prognostic value in PCS and/or might serve as biomarkers indicating a successful interventional approach warrants further longitudinal studies.


Subject(s)
COVID-19 , Primary Dysautonomias , Humans , Female , Adult , Middle Aged , Male , Post-Acute COVID-19 Syndrome , Heart Rate , Prospective Studies
7.
Eur J Prev Cardiol ; 30(15): 1634-1651, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37154363

ABSTRACT

AIMS: To provide a quantitative analysis of eHealth-supported interventions on health outcomes in cardiovascular rehabilitation (CR) maintenance (phase III) in patients with coronary artery disease (CAD) and to identify effective behavioural change techniques (BCTs). METHODS AND RESULTS: A systematic review was conducted (PubMed, CINAHL, MEDLINE, and Web of Science) to summarize and synthesize the effects of eHealth in phase III maintenance on health outcomes including physical activity (PA) and exercise capacity, quality of life (QoL), mental health, self-efficacy, clinical variables, and events/rehospitalization. A meta-analysis following the Cochrane Collaboration guidelines using Review Manager (RevMan5.4) was performed. Analyses were conducted differentiating between short-term (≤6 months) and medium/long-term effects (>6 months). Effective behavioural change techniques were defined based on the described intervention and coded according to the BCT handbook. Fourteen eligible studies (1497 patients) were included. eHealth significantly promoted PA (SMD = 0.35; 95%CI 0.02-0.70; P = 0.04) and exercise capacity after 6 months (SMD = 0.29; 95%CI 0.05-0.52; P = 0.02) compared with usual care. Quality of life was higher with eHealth compared with care as usual (SMD = 0.17; 95%CI 0.02-0.32; P = 0.02). Systolic blood pressure decreased after 6 months with eHealth compared with care as usual (SMD = -0.20; 95%CI -0.40-0.00; P = 0.046). There was substantial heterogeneity in the adapted BCTs and type of intervention. Mapping of BCTs revealed that self-monitoring of behaviour and/or goal setting as well as feedback on behaviour were most frequently included. CONCLUSION: eHealth in phase III CR is effective in stimulating PA and improving exercise capacity in patients with CAD while increasing QoL and decreasing systolic blood pressure. Currently, data of eHealth effects on morbidity, mortality, and clinical outcomes are scarce and should be investigated in future studies. REGISTRATION: PROSPERO: CRD42020203578.


KEY FINDINGS: • eHealth interventions in cardiovascular rehabilitation maintenance may be used to increase physical activity and exercise capacity as well as quality of life while reducing systolic blood pressure.• Effective behavioural change techniques used in eHealth interventions may include self-monitoring of behaviour, goal setting, and feedback on behaviour; thus, future studies are needed to define effective eHealth components based on behavioural change theories and associated behavioural change techniques to assist patients with coronary artery disease.


• This paper reviews the impact of eHealth-supported interventions on health outcomes during cardiovascular rehabilitation maintenance phase III for patients with coronary artery disease, with a meta-analysis performed to differentiate between short-term (≤6 months) and medium/long-term effects (>6 months).


Subject(s)
Cardiac Rehabilitation , Coronary Artery Disease , Telemedicine , Humans , Cardiac Rehabilitation/methods , Quality of Life , Exercise/physiology , Telemedicine/methods
8.
Microvasc Res ; 148: 104551, 2023 07.
Article in English | MEDLINE | ID: mdl-37201676

ABSTRACT

BACKGROUND: Post COVID-19 syndrome (PCS) is a complex condition with partly substantial impact on patients' social and professional life and overall life quality. Currently, the underlying cause(s) of PCS are unknown. Since PCS-specific symptoms could be associated with systemic alterations in tissue oxygen supply, we aimed to investigate changes in tissue oxygenation in patients with PCS. METHODS: A case-control study including 30 PCS patients (66.6 % males, 48.6 ± 11.2 years, mean time after (first) acute infection: 324 days), 16 cardiologic patients (CVD) (65.5 % males, 56.7 ± 6.3 years) and 11 young healthy controls (55 % males, 28.5 ± 7.4 years) was conducted. Near infrared spectroscopy (NIRS) was used to assess changes in tissue oxygenation during an arterial occlusion protocol on the non-dominant forearm (brachioradialis, 760/850 nm, 5 Hz). The protocol included 10-min rest, a 2-min baseline measurement followed by a 3-min ischemic period (upper-arm cuff, 50 mmHg above resting systolic blood pressure) and a 3-min reoxygenation period. PCS patients were grouped by presence of arterial hypertension and elevated BMI to assess the impact of risk factors. RESULTS: No differences in mean tissue oxygenation in the pre-occlusion phase existed between groups (p ≥ 0.566). During ischemia, comparisons of linear regressions slopes revealed slower oxygen desaturation for PCS patients (-0.064 %/s) compared to CVD patients (-0.08 %/s) and healthy subjects (-0.145 %/s) (p < 0.001). After cuff release, slowest speed for reoxygenation was detected in PCS patients at 0.84 %/s compared to CVD patients (1.04 %/s) and healthy controls (CG: 2.07 %/s) (p < 0.001). The differences between PCS patients and CVD patients during ischemia remained significant also after correction for risk factors. Analyses of complications during acute infection, persistence of PCS symptoms (time after acute infection), or PCS severity (number of lead symptoms) as confounding factors did not reveal a significant effect. CONCLUSIONS: This study provides evidence that the rate of tissue oxygen consumption is persistently altered in PCS and that PCS patients show an even slower decline in tissue oxygenation during occlusion than CVD patients. Our observations may at least partly explain PCS-specific symptoms such as physical impairment and fatigue.


Subject(s)
COVID-19 , Vascular Diseases , Male , Humans , Female , Post-Acute COVID-19 Syndrome , Case-Control Studies , COVID-19/diagnosis , Oxygen , Muscle, Skeletal/metabolism , Ischemia , Oxygen Consumption/physiology
9.
J Appl Physiol (1985) ; 134(4): 799-809, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36759165

ABSTRACT

Electromyostimulation (EMS) is used to maintain or build skeletal muscle and to increase cardiopulmonary fitness. Only limited data on the molecular mechanisms induced by EMS are available and effects on circulating microRNAs (c-miRNAs) have not been reported. This study aimed to evaluate whether EMS induces long-term changes in muscle- and cardiovascular-specific c-miRNA levels. Twelve healthy participants (33.0 ± 12.0 yr, 7 women) performed a 20-min whole body EMS training and a time- and intensity-matched whole body circuit training (CT) in random order. Blood samples were drawn pre-/posttraining and at 1.5, 3, 24, 48, and 72 h to determine creatine kinase (CK) and miRNA-21-5p, -126-3p, -133a-3p, -146a-5p, -206-3p, -222-3p, and -499a-5p levels. Muscular exertion was determined using an isometric strength test, and muscle soreness/pain was assessed by questionnaire. EMS participants reported higher muscle soreness 48 and 72 h postexercise and mean CK levels after EMS increased compared with CT at 48 and 72 h (time × group P ≤ 0.01). The EMS session induced a significant elevation of myomiR-206 and -133a levels starting at 1.5 and 3 h after exercise. Both miRNAs remained elevated for 72 h with significant differences between 24 and 72 h (time × group P ≤ 0.0254). EMS did not induce changes in cardiovascular miRNAs and no elevation in any miRNA was detected following CT. Time-course analysis of muscle damage marker CK and c-miR-133a and -206 levels did not suggest a common scheme (P ≥ 0.277). We conclude that a single EMS session induces specific long-lasting changes of miR-206 and miR-133 involved in muscle proliferation and differentiation. A single EMS session does not affect primary cardiovascular miRNA-21-5p, -126-3p, -146a-5p, and -222-3p levels.NEW & NOTEWORTHY Our study describes the long-term effects of electromyostimulation (EMS) on circulating miRNA levels. The observed increase of functional myomiR-206 and -133a levels over 72 h suggests long-lasting effects on muscle proliferation and differentiation, whereas cardiovascular miRNAs appear unaffected. Our findings suggest that circulating miRNAs provide useful insight into muscle regeneration processes after EMS and may thus be used to optimize EMS training effects.


Subject(s)
MicroRNAs , Humans , Female , MicroRNAs/genetics , Myalgia , Cross-Over Studies , Muscle, Skeletal , Exercise/physiology
10.
Front Nutr ; 9: 1051918, 2022.
Article in English | MEDLINE | ID: mdl-36324621

ABSTRACT

[This corrects the article DOI: 10.3389/fnut.2022.804046.].

11.
Front Physiol ; 13: 865437, 2022.
Article in English | MEDLINE | ID: mdl-35615672

ABSTRACT

Ample evidence exists that intensive care unit (ICU) treatment and invasive ventilation induce a transient or permanent decline in muscle mass and function. The functional deficit is often called ICU-acquired weakness with critical illness polyneuropathy (CIP) and/or myopathy (CIM) being the major underlying causes. Histopathological studies in ICU patients indicate loss of myosin filaments, muscle fiber necrosis, atrophy of both muscle fiber types as well as axonal degeneration. Besides medical prevention of risk factors such as sepsis, hyperglycemia and pneumonia, treatment is limited to early passive and active mobilization and one third of CIP/CIM patients discharged from ICU never regain their pre-hospitalization constitution. Electromyostimulation [EMS, also termed neuromuscular electrical stimulation (NMES)] is known to improve strength and function of healthy and already atrophied muscle, and may increase muscle blood flow and induce angiogenesis as well as beneficial systemic vascular adaptations. This systematic review aimed to investigate evidence from randomized controlled trails (RCTs) on the efficacy of EMS to improve the condition of critically ill patients treated on ICU. A systematic search of the literature was conducted using PubMed (Medline), CENTRAL (including Embase and CINAHL), and Google Scholar. Out of 1,917 identified records, 26 articles (1,312 patients) fulfilled the eligibility criteria of investigating at least one functional measure including muscle function, functional independence, or weaning outcomes using a RCT design in critically ill ICU patients. A qualitative approach was used, and results were structured by 1) stimulated muscles/muscle area (quadriceps muscle only; two to four leg muscle groups; legs and arms; chest and abdomen) and 2) treatment duration (≤10 days, >10 days). Stimulation parameters (impulse frequency, pulse width, intensity, duty cycle) were also collected and the net EMS treatment time was calculated. A high grade of heterogeneity between studies was detected with major cofactors being the analyzed patient group and selected outcome variable. The overall efficacy of EMS was inconclusive and neither treatment duration, stimulation site or net EMS treatment time had clear effects on study outcomes. Based on our findings, we provide practical recommendations and suggestions for future studies investigating the therapeutic efficacy of EMS in critically ill patients. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021262287].

12.
Front Nutr ; 9: 804046, 2022.
Article in English | MEDLINE | ID: mdl-35284446

ABSTRACT

Background: The use of probiotics in sports has been growing in recent years, as up to 50% of athletes suffer from training- and performance-limiting gastrointestinal (GI) problems. Moreover, repeated exhaustive exercise and high training loads may lead to a transiently depressed immune function, associated with an increased risk of upper respiratory tract infection (URTI). Aim: To provide a qualitative analysis of probiotic effects on URTI, GI symptoms and the immune system in healthy individuals under consideration of performance level as main classifier. Methods: A systematic review of the literature was conducted (PubMed, SPORTDiscus with Full Text, Web of Science) to analyze the effects of probiotics in athletes and healthy active individuals on GI problems, URTI, and the immune system. A qualitative synthesis with performance level and treatment duration as main classifiers was performed. Results: Of 41 eligible studies, 24 evaluated the effects of probiotic supplements in athletes, 10 in recreationally active individuals and 7 in healthy untrained adults. Large heterogeneity was observed in terms of probiotic strains, mode of delivery, performance level, treatment duration and outcome assessment. Overall, studies provided inconsistent observations. Conclusion: The effects of probiotics on immune system, URTI, and GI symptoms in athletes, healthy adults and recreationally active individuals remain inconclusive. Based on the analyzed studies and identified parameters, this article provides suggestions to align future research on the effects of probiotics in exercise. Systematic Review Registration: PROSPERO, identifier: CRD42021245840.

13.
Mol Ther ; 30(4): 1675-1691, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35077859

ABSTRACT

Exercise and its regulated molecules have myocardial protective effects against cardiac ischemia/reperfusion (I/R) injury. The muscle-enriched miR-486 was previously identified to be upregulated in the exercised heart, which prompted us to investigate the functional roles of miR-486 in cardiac I/R injury and to further explore its potential in contributing to exercise-induced protection against I/R injury. Our data showed that miR-486 was significantly downregulated in the heart upon cardiac I/R injury. Both preventive and therapeutic interventions of adeno-associated virus 9 (AAV9)-mediated miR-486 overexpression could reduce cardiac I/R injury. Using AAV9 expressing miR-486 with a cTnT promoter, we further demonstrated that cardiac muscle cell-targeted miR-486 overexpression was also sufficient to protect against cardiac I/R injury. Consistently, miR-486 was downregulated in oxygen-glucose deprivation/reperfusion (OGDR)-stressed cardiomyocytes, while upregulating miR-486 inhibited cardiomyocyte apoptosis through PTEN and FoxO1 inhibition and AKT/mTOR activation. Finally, we observed that miR-486 was necessary for exercise-induced protection against cardiac I/R injury. In conclusion, miR-486 is protective against cardiac I/R injury and myocardial apoptosis through targeting of PTEN and FoxO1 and activation of the AKT/mTOR pathway, and mediates the beneficial effect of exercise for myocardial protection. Increasing miR-486 might be a promising therapeutic strategy for myocardial protection.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , Apoptosis/genetics , Humans , Ischemia/metabolism , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
14.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830458

ABSTRACT

The aim of this study was to investigate differences in skeletal muscle gene expression of highly trained endurance and strength athletes in comparison to untrained individuals at rest and in response to either an acute bout of endurance or strength exercise. Endurance (ET, n = 8, VO2max 67 ± 9 mL/kg/min) and strength athletes (ST, n = 8, 5.8 ± 3.0 training years) as well as untrained controls (E-UT and S-UT, each n = 8) performed an acute endurance or strength exercise test. One day before testing (Pre), 30 min (30'Post) and 3 h (180'Post) afterwards, a skeletal muscle biopsy was obtained from the m. vastus lateralis. Skeletal muscle mRNA was isolated and analyzed by Affymetrix-microarray technology. Pathway analyses were performed to evaluate the effects of training status (trained vs. untrained) and exercise mode-specific (ET vs. ST) transcriptional responses. Differences in global skeletal muscle gene expression between trained and untrained were smaller compared to differences in exercise mode. Maximum differences between ET and ST were found between Pre and 180'Post. Pathway analyses showed increased expression of exercise-related genes, such as nuclear transcription factors (NR4A family), metabolism and vascularization (PGC1-α and VEGF-A), and muscle growth/structure (myostatin, IRS1/2 and HIF1-α. The most upregulated genes in response to acute endurance or strength exercise were the NR4A genes (NR4A1, NR4A2, NR4A3). The mode of acute exercise had a significant effect on transcriptional regulation Pre vs. 180'Post. In contrast, the effect of training status on human skeletal muscle gene expression profiles was negligible compared to strength or endurance specialization. The highest variability in gene expression, especially for the NR4A-family, was observed in trained individuals at 180'Post. Assessment of these receptors might be suitable to obtain a deeper understanding of skeletal muscle adaptive processes to develop optimized training strategies.


Subject(s)
Athletes , Gene Expression Regulation/genetics , Muscle, Skeletal/metabolism , Physical Endurance/genetics , Adolescent , Adult , Exercise Test , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Insulin Receptor Substrate Proteins/genetics , Male , Muscle, Skeletal/physiology , Myostatin , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Physical Endurance/physiology , Protein Array Analysis , RNA, Messenger , Resistance Training , Vascular Endothelial Growth Factor A/genetics , Young Adult
15.
J Cachexia Sarcopenia Muscle ; 12(4): 843-854, 2021 08.
Article in English | MEDLINE | ID: mdl-34105256

ABSTRACT

BACKGROUND: Sarcopenia, defined as loss of muscle mass, quality, and function, is associated with reduced quality of life and adverse health outcomes including disability and mortality. Electromyostimulation (EMS) has been suggested to attenuate the loss of muscle mass and function in elderly, sedentary individuals. This study aimed to investigate the effects of EMS on muscle strength and function during 4 weeks of inpatient medical rehabilitation. METHODS: Patients receiving 4 weeks of inpatient medical rehabilitation diagnosed with sarcopenia using bioimpedance analysis were eligible to participate. One hundred and thirty-four patients (55.7 ± 7.9 years, 25.4% female) were randomly assigned to three groups: whole-body (WB) EMS (n = 48): stimulation of major muscle groups (pectoral muscles, latissimus, trapezius, abdominals, upper arm and leg, lower back muscles, gluteal muscles, and thighs); part-body (PB) EMS (n = 42): stimulation of leg muscles including gluteal muscles and thighs; and control group (CG, n = 44). All participants performed six 20 min training sessions including dynamic movements (squats, lunges, biceps curl, chest press, butterfly reverse, reverse lunges, standing diagonal crunches, etc.) with superimposed (WB-, PB-) EMS or without EMS (CG) in addition to the standard rehabilitation programme. Primary outcome variables included muscle function assessed by chair rise test and 6 min walking test as well as muscle strength (isometric grip strength, leg, arm, and back extension). RESULTS: Primary outcome variables chair rise test and leg extension improved significantly (P = 0.001, η2  = 0.06 and P = 0.008, η2  = 0.06; EMS vs. CG) in that chair rise test results increased in WB-EMS from 5 (4; 7) to 7 (5; 9), in PB-EMS from 5 (5; 7) to 7 (6; 8), and in CG from 6 (4; 7) to 7 (5; 8) repetitions. Knee extension increased in WB-EMS from 692.3 ± 248.6 to 831.7 ± 298.7 N, in PB-EMS from 682.8 ± 257.8 to 790.2 ± 270.2 N, and in CG from 638.5 ± 236.9 to 703.2 ± 218.6 N. No adverse events or side effects occurred. CONCLUSIONS: We conclude that EMS might be an additional training option to improve muscle function and strength in sarcopenic patients during a 4 week rehabilitation programme. EMS provides greater functional and strength improvements compared with standard treatment with additional potential health benefits for sarcopenic cardiac and orthopaedic patients.


Subject(s)
Electric Stimulation Therapy , Sarcopenia , Aged , Female , Humans , Male , Muscle Strength , Muscle, Skeletal , Quality of Life , Sarcopenia/diagnosis , Sarcopenia/therapy
16.
Sci Rep ; 10(1): 11924, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32681124

ABSTRACT

There is currently insufficient evidence about the reliable quantification of exercise load and athlete's recovery management for monitoring training processes. Therefore, this test-retest study investigated the reliability of various subjective, muscle force, and blood-based parameters in order to evaluate their suitability for monitoring exercise and recovery cycles. 62 subjects completed two identical 60-min continuous endurance exercise bouts intermitted by a four-week recovery period. Before, immediately after, three, and 24 h after each exercise bout, analysis of parameters were performed. Significant changes over time were found for rating of perceived exertion (RPE), multidimensional mood state questionnaire (MDMQ), maximum voluntary contraction parameters (MVCs), and blood-based biomarkers (p < 0.05). Excellent reliability was calculated for MVCs, mean corpuscular volume and 5-bound distance (ICC > 0.90). A good reliability was found for thiobarbituric acid reactive substances (TBARS) (ICC = 0.79) and haematological markers (ICC = 0.75-0.86). For RPE, MDMQ, interleukin (IL-) 1RA, IL-6, IL-8, IL-15, cortisol, lactate dehydrogenase (LDH), creatine kinase (CK) only moderate reliability was found (ICC < 0.75). Significant associations for IL1-RA and CK to MVC were found. The excellent to moderate reliability of TBARS, LDH, IL-1RA, six measured haematological markers, MVCs and MDMQ implicate their suitability as physiological exercise response and recovery markers for monitoring athletes' load management.


Subject(s)
Biomarkers/metabolism , Exercise/physiology , Adult , Biomarkers/blood , Biomechanical Phenomena , Blood Proteins/metabolism , Cytokines/blood , Enzymes/blood , Female , Hormones/blood , Humans , Male , Metabolome , Muscles/physiology , Reproducibility of Results , Young Adult
17.
Am J Physiol Heart Circ Physiol ; 319(1): H13-H21, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32412780

ABSTRACT

Marathon running is an extreme physical activity, which determines cardiopulmonary adaption of athletes. Circular RNAs (circRNAs) as potential biomarkers in the blood stream have so far not been tested after such strenuous activities. In silico approaches were performed to identify the potential candidate circRNA MBOAT2. Next, we demonstrated high stability and conservation of circRNA MBOAT2 as well as its abundancy in human plasma. In addition to Sanger sequencing of the circRNA specific head-to-tail junction, or back-splice site, we established a synthetic plasmid standard which allowed exact copy number calculations of circRNA MBOAT2. We then analyzed plasmatic circRNA MBOAT2 and observed a significantly lower level 24 h after the marathon. Such alterations were correlated to physical exercise parameters confirming the role of circRNA MBOAT2 as a promising noncoding RNA biomarker detecting cardiopulmonary adaption.NEW & NOTEWORTHY In brief, we herein report a timeline of circulating circular RNA (circRNA) MBOAT2 in a cohort of marathon runners. Time-course analysis of plasmatic circRNA MBOAT2 demonstrated a significantly lowered level 24 h after the marathon. Abundancy of circRNA was correlated to physical exercise parameters highlighting the role of circRNA MBOAT2 as a valuable noncoding RNA biomarker detecting and following up cardiopulmonary adaption.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Cell-Free Nucleic Acids/blood , Endurance Training/methods , RNA, Circular/blood , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adaptation, Physiological , Adult , Biomarkers/blood , Cardiorespiratory Fitness , Humans , Male , Middle Aged , RNA Stability
18.
Am J Physiol Regul Integr Comp Physiol ; 318(6): R1103-R1115, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32401626

ABSTRACT

This study aimed to investigate the effects of a short-term (36 h) fasting period combined with an acute bout of exercise on markers of immune function and inflammation in healthy human subjects. Fourteen moderately trained male subjects (aged 19-39 yr) participated in a 36-h fasting trial (FA-T), followed by an acute bout of moderate exercise (60% V̇o2max). After 1 wk, the same subjects, as their own control, participated in a nonfasting trial (NFA-T) in which they performed an exercise trial of the same duration and intensity. Blood samples were taken before, immediately after, and 1 h after each exercise bout and analyzed for several immunological and metabolic markers. At baseline, fasting subjects showed lower levels of T cell apoptosis, lymphocyte-proliferative responses, IL-6, monocyte chemoattractant protein-1 (MCP-1), insulin, and leptin (P < 0.05) as well as higher levels of neutrophil oxidative burst and thiobarbituric acid reactive substances (TBARS) than those in the NFA-T (P < 0.05). After the exercise protocol, fasted subjects revealed higher T cell apoptosis, neutrophil oxidative burst, TBARS, TNFα, and MCP-1 levels as well as lower levels of lymphocyte-proliferative response, IL-6, insulin, and leptin than those in the NFA-T (P < 0.05). Short-term fasting aggravates perturbations in markers of immune function, and inflammation was induced by an acute moderate-intensity exercise protocol.


Subject(s)
Exercise/physiology , Fasting/blood , Inflammation/blood , Adult , Apoptosis/physiology , Biomarkers/blood , Chemokine CCL2/blood , Healthy Volunteers , Humans , Insulin/blood , Interleukin-6/blood , Leptin/blood , Male , Oxidative Stress/physiology , Thiobarbituric Acid Reactive Substances/metabolism , Tumor Necrosis Factor-alpha/blood , Young Adult
19.
Front Physiol ; 10: 1461, 2019.
Article in English | MEDLINE | ID: mdl-31849709

ABSTRACT

Exercise-induced muscular damage (EIMD) is a well-known phenomenon in exercise medicine that is closely related to the type and intensity of training, with especially eccentric training content providing various physiological irritations, including mechanical as well as metabolic. Besides the increase in markers of muscular damage, such as creatine kinase (CK) and myoglobin (Mb), several physiological shifts trigger a kind of stepwise repair chain reactions lasting over a time course from several hours to days. Subsequent inflammatory processes are closely related to muscular damage with decisive influence on physiological repair mechanisms, as indicated by an increased invasion of immune cells and typical patterns of pro- and anti-inflammatory cytokines. Previously, whole-body electromyostimulation (WB-EMS) showed significant, partly extreme distractions in markers of muscular damage lasting over several days. Because of the large area of stimulated muscle mass and a relatively high proportion of eccentric movements, initially too intense WB-EMS is predisposed to produce serious changes on several physiological levels due to its unfamiliar muscular strain. Therefore, it is the aim of this short review to focus on the possible immunological side effects of this aspiring training technology. As the number of original investigations in this field is rather small, we will include data from other studies about the relation of exercise-induced muscle damage and immune regulation.

20.
BMC Oral Health ; 18(1): 46, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29548317

ABSTRACT

BACKGROUND: This cross-sectional study investigates the potential association between active periodontal disease and high HbA1c levels in type-2-diabetes mellitus subjects under physical training. METHODS: Women and men with a diagnosis of non-insulin-dependent diabetes mellitus and ongoing physical and an ongoing exercise program were included. Periodontal conditions were assessed according to the CDC-AAP case definitions. Venous blood samples were collected for the quantitative analysis of HbA1c. Associations between the variables were examined with univariate and multivariate regression models. RESULTS: Forty-four subjects with a mean age of 63.4 ± 7.0 years were examined. Twenty-nine subjects had no periodontitis, 11 had a moderate and 4 had a severe form of periodontal disease. High fasting serum glucose (p < 0.0001), high BMI scores (p = 0.001), low diastolic blood pressure (p = 0.030) and high probing depth (p = 0.036) were significantly associated with high HbA1c levels. CONCLUSIONS: Within the limitations of this study HbA1c levels are positively associated with high probing pocket depth in patients with non-insulin-dependent diabetes mellitus under physical exercise training. Control and management of active periodontal diseases in non-insulin-dependent patients with diabetes mellitus is reasonable in order to maximize therapeutic outcome of lifestyle interventions.


Subject(s)
Diabetes Mellitus, Type 2/blood , Exercise , Glycated Hemoglobin/analysis , Periodontal Diseases/complications , Periodontal Pocket/complications , Adolescent , Adult , Aged , Cross-Sectional Studies , Dental Plaque Index , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Female , Humans , Male , Middle Aged , Periodontal Diseases/blood , Periodontal Diseases/pathology , Periodontal Index , Periodontal Pocket/pathology , Pilot Projects , Risk Factors , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...