Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(32): e202303491, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37161709

ABSTRACT

In the gas phase, thermal activation of supramolecular assemblies such as host-guest complexes leads commonly to noncovalent dissociation into the individual components. Chemical reactions, for example of encapsulated guest molecules, are only found in exceptional cases. As observed by mass spectrometry, when 1-amino-methyl-2,3-diazabicyclo[2.2.2]oct-2-ene (DBOA) is complexed by the macrocycle ß-cyclodextrin, its protonated complex undergoes collision-induced dissociation into its components, the conventional reaction pathway. Inside the macrocyclic cavity of cucurbit[7]uril (CB7), a competitive chemical reaction of monoprotonated DBOA takes place upon thermal activation, namely a stepwise homolytic covalent bond cleavage with the elimination of N2 , while the doubly protonated CB7⋅DBOA complex undergoes an inner-phase elimination of ethylene, a concerted, electrocyclic ring-opening reaction. These chemical reaction pathways stand in contrast to the gas-phase chemistry of uncomplexed monoprotonated DBOA, for which an elimination of NH3 predominates upon collision-induced activation, as a heterolytic bond cleavage reaction. The combined results, which can be rationalized in terms of organic-chemical reaction mechanisms and density-function theoretical calculations, demonstrate that chemical reactions in the gas phase can be steered chemoselectively through noncovalent interactions.

2.
Chem Commun (Camb) ; 58(22): 3617-3620, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35199806

ABSTRACT

Aryl diazonium ions are known to be an important intermediate in the divergent synthesis of azo compounds and substituted aromatics. The presence of more than one electrophilic center in a diazonium ion could lead to undesirable side reactions during a synthesis. Herein, we report that the electrophilic α-carbon on a phenyl diazonium [PhN2]+ ion can be selectively deactivated upon host-guest complexation with cucurbit[7]uril (CB7) in aqueous media, achieving a ∼60-fold increase in the half-life of [PhN2]+. Notably, however, the electrophilic nitrogen of the encapsulated diazonium ion remains active towards diazo coupling with strong nucleophiles, allowing the formation of azo compounds using a two-month-old aqueous solution of [CB7-PhN2]+. Our supramolecular approach can open new possibilities for the reactive chemistry of organic molecules in aqueous media.


Subject(s)
Bridged-Ring Compounds , Imidazoles , Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Ions/chemistry , Water
3.
J Phys Chem C Nanomater Interfaces ; 123(25): 15769-15776, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31303905

ABSTRACT

We demonstrate that the reproducibility of sensors for nitroaromatics based on surface-enhanced Raman spectroscopy (SERS) can be significantly improved via a hierarchical aqueous self-assembly approach mediated by the multifunctional macrocyclic molecule cucurbit[7]uril (CB[7]). Our approach is enabled by the novel host-guest complexation between CB[7] and an explosive marker 2,4-dinitrotoluene (DNT). Binding studies are performed using experimental and computation techniques to quantify key binding parameters for the first time. This supramolecular complexation allows DNT to be positioned in close proximity to the plasmonic hotspots within aggregates of CB[7] and gold nanoparticles, resulting in significant SERS signals with a detection limit of ∼1 µM. The supramolecular ensemble is selective against a structurally similar nitroaromatics owing to the molecular-recognition nature of the complexation as well as tolerant against the presence of model organic contaminants that bind strongly to the SERS substrates.

4.
Chem Commun (Camb) ; 55(38): 5495-5498, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31017133

ABSTRACT

Self-assembled nanoparticles have important applications in energy systems, optical devices and sensors, via the formation of aggregates with controlled interparticle spacing. Here we report aqueous self-assembly of rigid macrocycle cucurbit[7]uril (CB[7]) and fluorescent quantum dots (QDs), and demonstrate the potential of the system for efficient energy transfer and sensing of small molecules.

5.
Chem Commun (Camb) ; 54(33): 4075-4090, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29484317

ABSTRACT

Artificial nanomachines can be broadly defined as manmade molecular and nanosystems that are capable of performing useful tasks, very often, by means of doing mechanical work at the nanoscale. Recent advances in nanoscience allow these tiny machines to be designed and made with unprecedented sophistication and complexity, showing promise in novel applications, including molecular assemblers, self-propelling nanocarriers and in vivo molecular computation. This Feature Article overviews and compares major types of nanoscale machines, including molecular machines, self-assembled nanomachines and hybrid inorganic nanomachines, to reveal common structural features and operating principles across different length scales and material systems. We will focus on systems with feature size between 1 and 100 nm, where classical laws of physics meet those of quantum mechanics, giving rise to a spectrum of exotic physiochemical properties. Concepts of nanomachines will be illustrated by selected seminal work along with state-of-the-art progress, including our own contribution, across the fields. The Article will conclude with a brief outlook of this exciting research area.

6.
J Org Chem ; 83(3): 1358-1368, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29265816

ABSTRACT

Iron-catalyzed dehydrogenative cross-coupling of carbonyl compounds with aliphatic peroxide was developed under mild conditions. A library of linear alkylated and arylated peroxides are synthesized in good to excellent yield. This method is highly selective and general for a range of biologically important derivatives of 2-oxindole, barbituric acid, and 4-hydroxy coumarin with a good functional group tolerance and without the cleavage of the peroxide bond. This peroxidation reaction is upscalable to grams and also synthesizable in continuous flow with increased safety in short duration. Mechanistic investigation reveals Fe-(II) undergoes redox type process to generate the radical intermediates, which subsequently recombine selectively to form the stable peroxides. The potential of peroxides is evaluated by cell viability assay and found to exhibit the good anticancer activity with minimum IC50= 5.3 µM.


Subject(s)
Antineoplastic Agents/chemical synthesis , Iron/chemistry , Peroxides/chemical synthesis , Antineoplastic Agents/chemistry , Catalysis , Hydrogenation , Molecular Structure , Peroxides/chemistry
7.
Beilstein J Org Chem ; 11: 748-62, 2015.
Article in English | MEDLINE | ID: mdl-26124877

ABSTRACT

Two pairs of divalent and tetravalent porphyrin building blocks carrying the complementary supramolecular crown ether/secondary ammonium ion binding motif have been synthesized and their derived pseudorotaxanes have been studied by a combination of NMR spectroscopy in solution and ESI mass spectrometry in the gas phase. By simple mixing of the components the formation of discrete dimeric and trimeric (metallo)porphyrin complexes predominates, in accordance to binding stoichiometry, while the amount of alternative structures can be neglected. Our results illustrate the power of multivalency to program the multicomponent self-assembly of specific entities into discrete functional nanostructures.

8.
Chem Soc Rev ; 44(2): 515-31, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-24956973

ABSTRACT

The remarkable technical advances in mass spectrometry during the last decades, including soft ionisation techniques, the coupling of electrospray ionisation to flow reactors, and the broad scope of tandem mass spectrometric experiments applicable to mass-selected ions allow investigating the chemistry of molecular capsules in solution as well as in the absence of any environment. With these methods, mass spectrometry is capable of answering many questions starting from providing analytical characterisation data (elemental composition, stoichiometry, etc.) to structural aspects (connectivities, positions of building blocks in supramolecular complexes) and to the examination of solution and gas-phase reactivity including reactions inside molecular containers. The present article reviews this work with a focus rather on the chemical questions that can be answered than on the technical specialities of (tandem) mass spectrometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...