Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(3 Pt 2): 036406, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11580453

ABSTRACT

The spatial brightness profiles of emission lines for the K-like through He-like ionization states of Fe, Ge, and Ni have been measured during a set of experiments in which Fe and Ge were introduced into FTU tokamak plasmas by using the laser blowoff technique. Nickel was an intrinsic impurity observed during these experiments that was sputtered from the inconel limiter. The brightness profiles were measured by spatially scanable, photometrically calibrated vaccum ultraviolet and x-ray spectrometers that covered the 1 to 1700 A region. Simulations of these profiles and the time evolution of the laser blowoffs were performed with the MIST transport code using several sets of atomic physics compilations [ADPAK (originally in MIST), Arnaud and Raymond (AR92), Arnaud and Rothenflug (AR85), Mazzotta et al., and Mattioli (an extension to Mazzotta)]. The goal was to determine which set of available rates could best simulate the measured spatial brightness profiles and the charge state balance in the plasma. The Mazzotta et al. (for Fe and Ni), the Mattioli (for Ge), and the AR92 (for Fe only) rates adequately simulated the He-, Li-, Be-, Na-, Mg-like ionization states. The F- to B-like charge states could not be simulated by these compilations unless the relevant dielectronic rates were multiplied by a factor of 2. The ADPAK rates could not adequately predict any of the charge states of Fe, Ge, or Ni.

2.
Science ; 293(5532): 1112-6, 2001 Aug 10.
Article in English | MEDLINE | ID: mdl-11498584

ABSTRACT

The neutral hydrogen (H I) and ionized helium (He II) absorption in the spectra of quasars are unique probes of structure in the early universe. We present Far-Ultraviolet Spectroscopic Explorer observations of the line of sight to the quasar HE2347-4342 in the 1000 to 1187 angstrom band at a resolving power of 15,000. We resolve the He II Lyman alpha (Lyalpha) absorption as a discrete forest of absorption lines in the redshift range 2.3 to 2.7. About 50 percent of these features have H I counterparts with column densities N(H I) > 10(12.3) per square centimeter that account for most of the observed opacity in He II Lyalpha. The He II to H I column density ratio ranges from 1 to >1000, with an average of approximately 80. Ratios of <100 are consistent with photoionization of the absorbing gas by a hard ionizing spectrum resulting from the integrated light of quasars, but ratios of >100 in many locations indicate additional contributions from starburst galaxies or heavily filtered quasar radiation. The presence of He II Lyalpha absorbers with no H I counterparts indicates that structure is present even in low-density regions, consistent with theoretical predictions of structure formation through gravitational instability.

3.
Nature ; 412(6848): 706-8, 2001 Aug 16.
Article in English | MEDLINE | ID: mdl-11507632

ABSTRACT

Molecular hydrogen (H2) is by far the most abundant material from which stars, protoplanetary disks and giant planets form, but it is difficult to detect directly. Infrared emission lines from H2 have recently been reported towards beta Pictoris, a star harbouring a young planetary system. This star is surrounded by a dusty 'debris disk' that is continuously replenished either by collisions between asteroidal objects or by evaporation of ices on Chiron-like objects. A gaseous disk has also been inferred from absorption lines in the stellar spectrum. Here we present the far-ultraviolet spectrum of beta Pictoris, in which H2 absorption lines are not seen. This allows us to set a very low upper limit on the column density of H2: N(H2) 6 x 10-4. As CO would be destroyed under ambient conditions in about 200 years (refs 9, 11), our result demonstrates that the CO in the disk arises from evaporation of planetesimals.


Subject(s)
Astronomy , Extraterrestrial Environment , Hydrogen/analysis , Astronomical Phenomena , Carbon Monoxide/analysis , Spectrophotometry, Ultraviolet
4.
Appl Opt ; 39(25): 4513-23, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-18350038

ABSTRACT

We describe image testing, surface metrology, and modeling of telescope mirrors (0.5 m in diameter, f/4.3) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Laboratory image testing of wavelengths in the visible, vacuum, and midultraviolet validated a theoretical analysis by use of the Optical Surface Analysis Code (OSAC). Our modeling is based on surface metrology, including measurements of figure, midfrequency error, and microroughness. This combination of metrology, out-of-band performance testing, and modeling verified that the mirrors would meet mission requirements. We use OSAC to predict the FUSE telescope's far-ultraviolet (90-120-nm) point-spread function and assess its effect on instrument efficiency. The mirrors have a 90% encircled energy diameter of 1.5 arc sec at lambda = 100 nm. Including the effects of spacecraft pointing error, the mirrors have a predicted average slit transmission at lambda = 100 nm of approximately 87% and 96% for the 1.25- and 4-arc sec-wide spectrograph slits, respectively, where the required transmissions are 50% and 95%.

5.
Science ; 283(5400): 353-7, 1999 Jan 15.
Article in English | MEDLINE | ID: mdl-9888844

ABSTRACT

Well-resolved far-ultraviolet spectroscopic images of O I, S I, and previously undetected H ILyman-alpha emission from Io were obtained with the Hubble space telescope imaging spectrograph (STIS). Detected O I and S I lines (1250 to 1500 angstroms) have bright equatorial spots (up to 2.5 kilorayleighs) that shift position with jovian magnetic field orientation; limb glow that is brighter on the hemisphere facing the jovian magnetic equator; and faint diffuse emission extending to approximately 20 Io radii. All O I and S I features brightened by approximately 50 percent in the last two images, concurrently with a ground-based observation of increased iogenic [O I] 6300-angstrom emission. The H ILyman-alpha emission, consisting of a small, approximately 2-kilorayleigh patch near each pole, has a different morphology and time variation.


Subject(s)
Extraterrestrial Environment , Hydrogen , Jupiter , Oxygen , Sulfur , Atmosphere , Magnetics , Spectrophotometry, Ultraviolet
6.
Appl Opt ; 34(22): 4637-9, 1995 Aug 01.
Article in English | MEDLINE | ID: mdl-21052296

ABSTRACT

The measured photocurrents from two different p-n-junction silicon photodiodes at 170-Å (73-eV) and at 8.34-Å (1480-eV) light are presented. One is a standard extreme-UV photodiode fabricated on low resistivity silicon (70-100 Ω cm), and the other is fabricated on high-resistivity silicon (> 2 × 10(4) Ω cm). The photocurrents from the diode on high-resistivity silicon are at least an order of magnitude greater than the photocurrents from the diode on low-resistivity silicon when a reverse bias of 40 V is applied to each. This photocurrent enhancement is 15.4 ± 4 at 8.34 Å and 12.5 ± 2 at 170 Å.

7.
Appl Opt ; 33(16): 3595-9, 1994 Jun 01.
Article in English | MEDLINE | ID: mdl-20885748

ABSTRACT

The measured conversion efficiencies at 9.89, 23.6, 44.7, and 160 Å of P45 phosphor screens, as well as those of paraterphenyl, tetraphenyl butadiene, and sodium salicylate at 9.89, 44.7, and 67.6 Å, are presented. The conversion efficiency is defined as the ratio of photoelectrons ejected from the photocathode of a visible detector, which are excited by the scintillated photons that are emitted from the phosphor in a solid angle of 2π, to the number of soft-x-ray photons incident on the phosphor. The effect of the phosphor's thickness on the conversion efficiency was studied. The P45 phosphor converts the soft-x-ray photon (10-200 Å) into an order of magnitude more visible photons than the low-Z phosphors. The P45 phosphor screen used in conjunction with a photomultiplier tube offers a soft-x-ray photodetector with a conversion efficiency that ranges from 0.5 at 160 Å to 12 at 9.89 Å and a high electronic gain.

8.
Appl Opt ; 29(24): 3467-9, 1990 Aug 20.
Article in English | MEDLINE | ID: mdl-20567436

ABSTRACT

Al III to Al v spectra emitted from a Penning ionization discharge have been recorded in the 110-180 i range using two flat multilayer mirrors (Mo/Si and Mo/B(4)C) as dispersive elements in a near normal incidence configuration.

9.
Appl Opt ; 29(25): 3694-8, 1990 Sep 01.
Article in English | MEDLINE | ID: mdl-20567470

ABSTRACT

Peak reflectivity measurements of W/C, Mo/Si, and Mo/B(4)C multilayer mirrors have been performed using line and synchrotron radiation in the 8-190 A wavelength range. Short wavelength measurements using a line source were corrected for nonmonochromatic and divergent incident radiation. Reflectivities of Mo/Si mirrors, measured with synchrotron radiation, ranged from 25 to 44% but decreased significantly around the Si absorption edge. Mo/B(4)C multilayer mirrors were measured that had peak reflectivities from 10 to 25% between 90 and 200 A and bandpasses as small as 3 A.

10.
Science ; 246(4936): 1459-66, 1989 Dec 15.
Article in English | MEDLINE | ID: mdl-17756000

ABSTRACT

Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.

11.
Science ; 233(4759): 74-9, 1986 Jul 04.
Article in English | MEDLINE | ID: mdl-17812892

ABSTRACT

Data from solar and stellar occultations of Uranus indicate a temperature of about 750 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane and acetylene in the lower levels. The ultraviolet spectrum of the sunlit hemisphere is dominated by emissions from atomic and molecular hydrogen, which are kmown as electroglow emissions. The energy source for these emissions is unknown, but the spectrum implies excitation by low-energy electrons (modeled with a 3-electron-volt Maxwellian energy distribution). The major energy sink for the electrons is dissociation of molecular hydrogen, producing hydrogen atoms at a rate of 10(29) per second. Approximately half the atoms have energies higher than the escape energy. The high temperature of the atmosphere, the small size of Uranus, and the number density of hydrogen atoms in the thermosphere imply an extensive thermal hydrogen corona that reduces the orbital lifetime of ring particles and biases the size distribution toward larger particles. This corona is augmented by the nonthermal hydrogen atoms associated with the electroglow. An aurora near the magnetic pole in the dark hemisphere arises from excitation of molecular hydrogen at the level where its vertical column abundance is about 10(20) per square centimeter with input power comparable to that of the sunlit electroglow (approximately 2x10(11) watts). An initial estimate of the acetylene volume mixing ratio, as judged from measurements of the far ultraviolet albedo, is about 2 x 10(-7) at a vertical column abundance of molecular hydrogen of 10(23) per square centimeter (pressure, approximately 0.3 millibar). Carbon emissions from the Uranian atmosphere were also detected.

13.
Science ; 215(4532): 548-53, 1982 Jan 29.
Article in English | MEDLINE | ID: mdl-17771276

ABSTRACT

Combined analysis of helium (584 angstroms) airglow and the atmospheric occultations of the star delta Scorpii imply a vertical mixing parameter in Saturn's upper atmosphere of K (eddy diffusion coefficient) approximately 8 x 10(7) square centimeters per second, an order of magnitude more vigorous than mixing in Jupiter's upper atmosphere. Atmospheric H(2) band absorption of starlight yields a preliminary temperature of 400 K in the exosphere and a temperature near the homopause of approximately 200 K. The energy source for the mid-latitude H(2) band emission still remains a puzzle. Certain auroral emissions can be fully explained in terms of electron impact on H(2), and auroral morphology suggests a link between the aurora and the Saturn kilometric radiation. Absolute optical depths have been determined for the entire C ring andparts of the A and B rings. A new eccentric ringlet has been detected in the C ring. The extreme ultraviolet reflectance of the rings is fairly uniform at 3.5 to 5 percent. Collisions may control the distribution of H in Titan's H torus, which has a total vertical extent of approximately 14 Saturn radii normal to the orbit plane.

14.
Science ; 212(4491): 206-11, 1981 Apr 10.
Article in English | MEDLINE | ID: mdl-17783831

ABSTRACT

The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.

15.
Science ; 206(4421): 962-6, 1979 Nov 23.
Article in English | MEDLINE | ID: mdl-17733915

ABSTRACT

Extreme ultraviolet spectral observations of the Jovian planetary system made during the Voyager 2 encounter have extended our knowledge of many of the phenomena and physical processes discovered by the Voyager 1 ultraviolet spectrometer. In the 4 months between encounters, the radiation from Io's plasma torus has increased in intensity by a factor of about 2. This change was accompanied by a decrease in plasma temperature of about 30 percent. The high-latitude auroral zones have been positively associated with the magnetic projection of the plasma torus onto the planet. Emission in molecular hydrogen bands has been detected from the equatorial regions of Jupiter, indicating planetwide electron precipitation. Hydrogen Lyman alpha from the dark side of the planet has been measured at an intensity of about 1 kilorayleigh. An observation of the occultation of alpha Leonis by Jupiter was carried out successfully and the data are being analyzed in detail.

16.
Science ; 204(4396): 979-82, 1979 Jun 01.
Article in English | MEDLINE | ID: mdl-17800434

ABSTRACT

Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 10(5) K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (>/= 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.

17.
Appl Opt ; 18(8): 1209-16, 1979 Apr 15.
Article in English | MEDLINE | ID: mdl-20208909

ABSTRACT

A 400-mm normal incidence concave grating spectrophotometer, specifically designed for plasma diagnostics, is described. The wavelength drive, in which the grating is translated as well as rotated, is discussed in detail; the wavelength linearity of the sine drive and methods of improving it are analyzed. The instrument can be used in any orientation, is portable under vacuum, and quite rugged. The construction techniques utilized produce a high quality vacuum making the instrument compatible with both high purity plasma devices and synchrotron radiation sources. The photometric sensitivity calibration was found to be very stable during extended use on high temperature plasma devices. The applications of the instrument to diagnose plasmas in two tokamaks and a mirror device are described. A facility used for photometric calibration of extreme ultraviolet (lambda > 300-A) spectrophotometers against NBS standard diodes is described. The instrumental calibration obtained using this facility was checked by using synchrotron radiation from SURF II; very good agreement was observed.

18.
Science ; 197(4305): 755-7, 1977 Aug 19.
Article in English | MEDLINE | ID: mdl-17790768

ABSTRACT

A rocket-borne spectrograph detected H I Lyman alpha emission from the disk of Saturn and from the vicinity of the planet. The signal is consistent with an emission brightness of 700 rayleighs for the disk and 200 rayleighs for the vicinity of Saturn. The emission from the vicinity of the planet may be due to a hydrogen atmosphere associated with the saturnian ring system.

19.
Appl Opt ; 16(7): 1902-4, 1977 Jul 01.
Article in English | MEDLINE | ID: mdl-20168831

ABSTRACT

A Penning discharge was investigated photoelectrically as a light source from 100 A to 300 A. The source showed reasonable stability-10% over an hour's operation. Bright spectral lines observed were a mixture of lines from the filling gas (Ne) and from sputtered cathode material (Al). The discharge was found to be an intense line source; an estimate of the brightness of the 160 A Al IV lines shows them to be comparable with the highly ionized metal lines appearing in a pulsed tokamak discharge. Satellites of the Al IV resonance lines at 160 A appear clearly in the spectra.

20.
Proc Natl Acad Sci U S A ; 73(2): 317-21, 1976 Feb.
Article in English | MEDLINE | ID: mdl-768980

ABSTRACT

Proteins, nucleic acids, and fluorescein-conjugated antibody are shown to be identifidable in situ via the fluorescence excited by the focused electron beam of a canning electron microscope. A molecular species is identified by its characteristic fluorescence spectrum and by a characteristic alteration of the spectrum with time under the electron beam. Primary protein fluorescence is relatively rapidly destroyed by the beam, but protein photoproduct fluorescence is more rugged and will in some cases permit detection of small numbers of protein molecules. Nucleic acid fluorescence is extremely long-lived and will permit detection of small numbers of nucleic acid residues. The theoretical resolution limit for localization of a particular molecular species -- about 20 A--is determined by the known maximum distance for molecular excitation by fast electrons. Drect extapolation from an observed resolution of 900 A in the localization of nucleic acid using a low-efficiency detector leads to an experimental resolution limit of less than 60 A. Fluorescence is strongly quenched by residual water in the specimen. Similar quenching is produced by some macromolecular associations and so may serve to localize such associations.


Subject(s)
Antibodies , Microscopy, Fluorescence/methods , Nucleic Acids , Proteins , Animals , Cattle , Cell Line , Cell Nucleus/ultrastructure , Coliphages , DNA , DNA, Bacterial , DNA, Viral , Escherichia coli , Male , Nucleic Acids/metabolism , Proteins/metabolism , Serum Albumin, Bovine , Spectrometry, Fluorescence , Spermatozoa/ultrastructure , Tryptophan , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...