Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(39): 36001-36007, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810699

ABSTRACT

Iron content can cause severe challenges through zinc production from zinc sulfide concentrate. The zinc industry extensively uses the jarosite precipitation process (JPP) to precipitate dissolved iron and remove it before transferring the solution to downstream stages. Precipitating agents (PAs) play an essential role in the JPP. However, surprisingly, no study compares the efficiency of various PAs on an industrial scale. As an innovative approach, this investigation compares the technical and economic aspects of using various sodium and ammonium compounds (hydroxides, carbonates, bicarbonates, sulfates, and bisulfates) as typical PAs for the JPP at the Bafgh Zinc Smelting Company (BZSC) plant. Experimental results revealed that ammonium hydroxide, with 90.85% iron removal efficiency, had the highest performance, and sodium bisulfate and ammonium bisulfate had the lowest efficiency (74.54 and 77.13%, respectively). However, since ammonium hydroxide is a corrosive PA, it is not a promising alternative to sodium sulfate (with both economic and safety issues). Based on technical and economic assessments, sodium carbonate (84.31% iron removal efficiency) showed the highest potential for an efficient JPP.

2.
Materials (Basel) ; 13(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086695

ABSTRACT

Jarosite precipitation process (JPP) is the most frequently used procedure for iron removal in the hydrometallurgical zinc extraction process. However, there is a gap in the knowledge of the relationship between operational parameters and the low contaminant JPP on the industrial scale. This study will address these issues by investigating the behavior of zinc calcine (ZC) as a neutralizing agent, exploring the source of zinc and iron through leaching experiments, and simulating the Jarosite process of the Bafgh Zinc Smelting Company (BZSC). The results showed that the zinc dissolution efficiency was 90.3% at 90 °C, and 73% of the iron present in the calcine can be solubilized. The main outcome was the iron removal of about 85% by alkaline ions present in ZC without the addition of any precipitating agent. The second target was to evaluate the effect of operational parameters on jarosite precipitation. Results revealed that increasing the temperature to 90 °C and the stirring rate to 500 RPM as well as adjusting the ZC's pH during the jarosite precipitation remarkably improved iron removal. Considering all these factors in the plant could improve Fe precipitation to around 80% on average.

3.
J Hazard Mater ; 385: 121589, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31735471

ABSTRACT

A green approach was introduced to regenerate Sn-Pb solder from waste printed circuit boards (PCBs). For this purpose, waste Al-based heat sinks were used as cementing agent to precipitate Sn and Pb from pregnant leach solution (PLS) obtained from the dissolution of waste PCBs in HCl. 97 % and 94.9 % of Sn and Pb were recovered, respectively, under optimum conditions at Al powder size of 300 µm, Al dosage of 1.516 g/l and reaction time of 15.41 min. Thermodynamic analysis was performed to predict the effect of temperature on the main reactions relevant to the cementation process. The structure of the Sn-Pb cement changed as function of temperature, leading to enhancement of the cementation rate via improving cathodic area. Kinetic modeling indicates that product layer diffusion is the rate limiting step for Sn and Pb cementation. However, the reaction mechanism shifted to chemical reaction control at high temperatures. The results of solder characterization indicated that the melting point of solder was 184.76 °C. The electrical resistivity and conductivity of the recovered pure alloy were measured to be 34.73 µΩ-cm and 2.88 × 106 Sm-1, respectively. The characterization revealed that the regenerated product is adequate as an alternative solder alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...