Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5873, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041194

ABSTRACT

Due to the photocatalytic property of titanium dioxide (TiO2), its application may be dependent on the growing light environment. In this study, radish plants were cultivated under four light intensities (75, 150, 300, and 600 µmol m-2 s-1 photosynthetic photon flux density, PPFD), and were weekly sprayed (three times in total) with TiO2 nanoparticles at different concentrations (0, 50, and 100 µmol L-1). Based on the obtained results, plants used two contrasting strategies depending on the growing PPFD. In the first strategy, as a result of exposure to high PPFD, plants limited their leaf area and send the biomass towards the underground parts to limit light-absorbing surface area, which was confirmed by thicker leaves (lower specific leaf area). TiO2 further improved the allocation of biomass to the underground parts when plants were exposed to higher PPFDs. In the second strategy, plants dissipated the absorbed light energy into the heat (NPQ) to protect the photosynthetic apparatus from high energy input due to carbohydrate and carotenoid accumulation as a result of exposure to higher PPFDs or TiO2 concentrations. TiO2 nanoparticle application up-regulated photosynthetic functionality under low, while down-regulated it under high PPFD. The best light use efficiency was noted at 300 m-2 s-1 PPFD, while TiO2 nanoparticle spray stimulated light use efficiency at 75 m-2 s-1 PPFD. In conclusion, TiO2 nanoparticle spray promotes plant growth and productivity, and this response is magnified as cultivation light intensity becomes limited.


Subject(s)
Nanoparticles , Raphanus , Light , Photosynthesis/physiology
2.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501376

ABSTRACT

Chrysanthemum (Chrysanthemum morifolium) is among the most popular ornamental plants, propagated mainly through stem cuttings. There is a lack of information regarding the impact of the lighting environment on the successful production of cuttings and underlying mechanisms. The light spectrum affects plant morphology, growth, and photosynthesis. In the present study, chrysanthemum, cv. 'Katinka' cuttings, were exposed to five lighting spectra, including monochromatic red (R), blue (B) lights, and multichromatic lights, including a combination of R and B (R:B), a combination of R, B, and far red (R:B:FR) and white (W), for 30 days. B light enhanced areal growth, as indicated by a higher shoot mass ratio, while R light directed the biomass towards the underground parts of the cuttings. Monochromatic R and B lights promoted the emergence of new leaves. In contrast, individual leaf area was largest under multichromatic lights. Exposing the cuttings to R light led to the accumulation of carbohydrates in the leaves. Cuttings exposed to multichromatic lights showed higher chlorophyll content than monochromatic R- and B-exposed cuttings. Conversely, carotenoid and anthocyanin contents were the highest in monochromatic R- and B-exposed plants. B-exposed cuttings showed higher photosynthetic performance, exhibited by the highest performance index on the basis of light absorption, and maximal quantum yield of PSII efficiency. Although R light increased biomass toward roots, B light improved above-ground growth, photosynthetic functionality, and the visual performance of Chrysanthemum cuttings.

3.
Cells ; 11(7)2022 03 29.
Article in English | MEDLINE | ID: mdl-35406719

ABSTRACT

Plants deploy molecular, physiological, and anatomical adaptations to cope with long-term water-deficit exposure, and some of these processes are controlled by circadian clocks. Circadian clocks are endogenous timekeepers that autonomously modulate biological systems over the course of the day-night cycle. Plants' responses to water deficiency vary with the time of the day. Opening and closing of stomata, which control water loss from plants, have diurnal responses based on the humidity level in the rhizosphere and the air surrounding the leaves. Abscisic acid (ABA), the main phytohormone modulating the stomatal response to water availability, is regulated by circadian clocks. The molecular mechanism of the plant's circadian clock for regulating stress responses is composed not only of transcriptional but also posttranscriptional regulatory networks. Despite the importance of regulatory impact of circadian clock systems on ABA production and signaling, which is reflected in stomatal responses and as a consequence influences the drought tolerance response of the plants, the interrelationship between circadian clock, ABA homeostasis, and signaling and water-deficit responses has to date not been clearly described. In this review, we hypothesized that the circadian clock through ABA directs plants to modulate their responses and feedback mechanisms to ensure survival and to enhance their fitness under drought conditions. Different regulatory pathways and challenges in circadian-based rhythms and the possible adaptive advantage through them are also discussed.


Subject(s)
Abscisic Acid , Circadian Clocks , Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Plant Stomata/physiology , Plants/metabolism , Water/metabolism
4.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360809

ABSTRACT

To investigate the importance of light on healing and acclimatization, in the present study, grafted watermelon seedlings were exposed to darkness (D) or light, provided by blue (B), red (R), a mixture of R (68%) and B (RB), or white (W; 35% B, 49% intermediate spectra, 16% R) LEDs for 12 days. Survival ratio, root and shoot growth, soluble carbohydrate content, photosynthetic pigments content, and photosynthetic performance were evaluated. Seedling survival was not only strongly limited in D but the survived seedlings had an inferior shoot and root development, reduced chlorophyll content, and attenuated photosynthetic efficiency. RB-exposed seedlings had a less-developed root system. R-exposed seedlings showed leaf epinasty, and had the smallest leaf area, reduced chlorophyll content, and suppressed photosynthetic apparatus performance. The R-exposed seedlings contained the highest amount of soluble carbohydrate and together with D-exposed seedlings the lowest amount of chlorophyll in their scions. B-exposed seedlings showed the highest chlorophyll content and improved overall PSII photosynthetic functioning. W-exposed seedling had the largest leaf area, and closely resembled the photosynthetic properties of RB-exposed seedlings. We assume that, during healing of grafted seedlings monochromatic R light should be avoided. Instead, W and monochromatic B light may be willingly adopted due to their promoting effect on shoot, pigments content, and photosynthetic efficiency.


Subject(s)
Citrullus , Light , Photosynthesis , Seedlings , Acclimatization , Citrullus/growth & development , Citrullus/metabolism , Darkness , Plant Leaves , Seedlings/growth & development , Seedlings/metabolism
5.
Cells ; 10(8)2021 08 05.
Article in English | MEDLINE | ID: mdl-34440766

ABSTRACT

Saffron is a valuable plant and one of the most expensive spices worldwide. Nowadays, there is a tendency to produce this crop in indoor plant production systems. However, the production of saffron is restricted by the need for the reproduction of high-quality corms. In this study, we investigated the effect of different ratios of red (R) and blue (B) light spectra (including 100% B (monochromatic B), 75%, 50%, 40%, 25% B, and 0% B (monochromatic R) on the photosynthetic performance and biomass partitioning as well as morphological and biochemical characteristics of saffron. The growth of flower, root, and corm was improved by increasing the proportion of B to R light. B-grown plants were characterized by the highest photosynthetic functionality with efficient electron transport and lower energy dissipation when compared to R-grown plants. B light directed biomass toward the corms and floral organs, while R light directed it toward the leaves. In saffron, the weight of a daughter corm is of great importance since it determines the yield of the next year. As the ratio of B to R light increased, the daughter corms also became heavier, at the cost of reducing their number, though increasing the proportion of B-enhanced antioxidant capacity as well as the activity of ascorbate peroxidase and catalase while superoxide dismutase activity was enhanced in R-grown plants. In conclusion, B light increased the production of high-quality daughter corms and altered biomass partitioning towards harvestable organs (corms and flowers) in saffron plants.


Subject(s)
Crocus/radiation effects , Crops, Agricultural/radiation effects , Flowers/radiation effects , Light , Photosynthesis/radiation effects , Antioxidants/metabolism , Biomass , Carbohydrate Metabolism/radiation effects , Carotenoids/metabolism , Chlorophyll/metabolism , Crocus/growth & development , Crocus/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Enzymes/metabolism , Flowers/growth & development , Flowers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...