Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 5(2): 493-507, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24139804

ABSTRACT

Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.


Subject(s)
GMP Reductase/metabolism , Melanoma/enzymology , Purine Nucleosides/biosynthesis , Animals , Cell Line, Tumor , Cell Movement , Extracellular Matrix/metabolism , GMP Reductase/antagonists & inhibitors , GMP Reductase/genetics , Guanosine Triphosphate/metabolism , HCT116 Cells , Humans , IMP Dehydrogenase/metabolism , Melanoma/metabolism , Melanoma/pathology , Mice , Phenotype , RNA Interference , RNA, Small Interfering/metabolism , Transplantation, Heterologous , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
2.
Am J Pathol ; 182(1): 142-51, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23245831

ABSTRACT

In normal human cells, oncogene-induced senescence (OIS) depends on induction of DNA damage response. Oxidative stress and hyperreplication of genomic DNA have been proposed as major causes of DNA damage in OIS cells. Here, we report that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage in normal human fibroblasts (NHFs) undergoing HRAS(G12V)-induced senescence. NHF-HRAS(G12V) cells underexpressed thymidylate synthase (TS) and ribonucleotide reductase (RR), two enzymes required for the entire de novo deoxyribonucleotide biosynthesis, and possessed low dNTP levels. Chromatin at the promoters of the genes encoding TS and RR was enriched with retinoblastoma tumor suppressor protein and histone H3 tri-methylated at lysine 9. Importantly, ectopic coexpression of TS and RR or addition of deoxyribonucleosides substantially suppressed DNA damage, senescence-associated phenotypes, and proliferation arrest in two types of NHF-expressing HRAS(G12V). Reciprocally, short hairpin RNA-mediated suppression of TS and RR caused DNA damage and senescence in NHFs, although less efficiently than HRAS(G12V). However, overexpression of TS and RR in quiescent NHFs did not overcome proliferation arrest, suggesting that unlike quiescence, OIS requires depletion of dNTP pools and activated DNA replication. Our data identify a previously unknown role of deoxyribonucleotides in regulation of OIS.


Subject(s)
Cellular Senescence/genetics , DNA Damage/genetics , Deoxyribonucleotides/metabolism , Oncogenes/physiology , Cell Proliferation , Cells, Cultured , Cellular Senescence/physiology , DNA Replication/genetics , Deoxyribonucleotides/genetics , Fibroblasts/metabolism , Fibroblasts/physiology , Humans , Proto-Oncogene Proteins p21(ras)/physiology , Ribonucleotide Reductases/biosynthesis , Ribonucleotide Reductases/physiology , Thymidylate Synthase/biosynthesis , Thymidylate Synthase/physiology
3.
Aging (Albany NY) ; 4(12): 917-22, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23249808

ABSTRACT

The down-regulation of dominant oncogenes, including C-MYC, in tumor cells often leads to the induction of senescence via mechanisms that are not completely identified. In the current study, we demonstrate that MYC-depleted melanoma cells undergo extensive DNA damage that is caused by the underexpression of thymidylate synthase (TS) and ribonucleotide reductase (RR) and subsequent depletion of deoxyribonucleoside triphosphate pools. Simultaneous genetic inhibition of TS and RR in melanoma cells induced DNA damage and senescence phenotypes very similar to the ones caused by MYC-depletion. Reciprocally, overexpression of TS and RR in melanoma cells or addition of deoxyribo-nucleosides to culture media substantially inhibited DNA damage and senescence-associated phenotypes caused by C-MYC depletion. Our data demonstrate the essential role of TS and RR in C-MYC-dependent suppression of senescence in melanoma cells.


Subject(s)
Cellular Senescence/drug effects , DNA Damage/drug effects , Deoxyribonucleosides/pharmacology , Melanoma/enzymology , Proto-Oncogene Proteins c-myc/metabolism , Ribonucleotide Reductases/metabolism , Skin Neoplasms/enzymology , Thymidylate Synthase/metabolism , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic , Genotype , Humans , Melanoma/genetics , Melanoma/pathology , Phenotype , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleotide Reductases/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Thymidylate Synthase/genetics , Time Factors , Transfection , Tumor Suppressor Proteins/metabolism
4.
Blood ; 119(6): 1450-8, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22144178

ABSTRACT

Bortezomib, a therapeutic agent for multiple myeloma (MM) and mantle cell lymphoma, suppresses proteosomal degradation leading to substantial changes in cellular transcriptional programs and ultimately resulting in apoptosis. Transcriptional regulators required for bortezomib-induced apoptosis in MM cells are largely unknown. Using gene expression profiling, we identified 36 transcription factors that displayed altered expression in MM cells treated with bortezomib. Analysis of a publically available database identified Kruppel-like family factor 9 (KLF9) as the only transcription factor with significantly higher basal expression in MM cells from patients who responded to bortezomib compared with nonresponders. We demonstrated that KLF9 in cultured MM cells was up-regulated by bortezomib; however, it was not through the induction of endoplasmic reticulum stress. Instead, KLF9 levels correlated with bortezomib-dependent inhibition of histone deacetylases (HDAC) and were increased by the HDAC inhibitor LBH589 (panobinostat). Furthermore, bortezomib induced binding of endogenous KLF9 to the promoter of the proapoptotic gene NOXA. Importantly, KLF9 knockdown impaired NOXA up-regulation and apoptosis caused by bortezomib, LBH589, or a combination of theses drugs, whereas KLF9 overexpression induced apoptosis that was partially NOXA-dependent. Our data identify KLF9 as a novel and potentially clinically relevant transcriptional regulator of drug-induced apoptosis in MM cells.


Subject(s)
Apoptosis/drug effects , Boronic Acids/pharmacology , Hydroxamic Acids/pharmacology , Kruppel-Like Transcription Factors/genetics , Multiple Myeloma/genetics , Pyrazines/pharmacology , Antineoplastic Agents/pharmacology , Blotting, Western , Bortezomib , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles , Kruppel-Like Transcription Factors/metabolism , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Oligonucleotide Array Sequence Analysis , Panobinostat , Promoter Regions, Genetic/genetics , Protein Binding , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...