Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(37): e202308749, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37483088

ABSTRACT

The synthesis of a series of triangular-shaped tricarboxamides endowed with three picoline or nicotine units (compounds 2 and 3, respectively) or just one nicotine unit (compound 4) is reported, and their self-assembling features investigated. The pyridine rings make compounds 2-4 electronically complementary with our previously reported oligo(phenylene ethynylene)tricarboxamides (OPE-TA) 1 to form supramolecular copolymers. C3 -symmetric tricarboxamide 2 forms highly stable intramolecular five-membered pseudocycles that impede its supramolecular polymerization into poly-2 and the co-assembly with 1 to yield copolymer poly-1-co-2. On the other hand, C3 -symmetric tricarboxamide 3 readily forms poly-3 with great stability but unable to form helical supramolecular polymers despite the presence of the peripheral chiral side chains. The copolymer poly-1-co-3 can only be obtained by a previous complete disassembly of the constitutive homopolymers in CHCl3 . Helical poly-1-co-3 arises in a process involving the transfer of the helicity from racemic poly-1 to poly-3, and the amplification of asymmetry from chiral poly-3 to poly-1. Importantly, C2v -symmetric 4, endowed with only one nicotinamide moiety and three chiral side chains, self-assembles into a P-type helical supramolecular polymer (poly-4) in a thermodynamically controlled cooperative process. The combination of poly-1 and poly-4 generates chiral supramolecular copolymer poly-1-co-4, whose blocky microstructure has been investigated by applying the previously reported supramolecular copolymerization model.

SELECTION OF CITATIONS
SEARCH DETAIL
...