Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine (Lond) ; 17(19): 1339-1354, 2022 08.
Article in English | MEDLINE | ID: mdl-36125080

ABSTRACT

Aim: miRNAs have been shown to improve the restoration of craniofacial bone defects. This work aimed to enhance transfection efficiency and miR-200c-induced bone formation in alveolar bone defects via plasmid DNA encoding miR-200c delivery from CaCO3 nanoparticles. Materials & methods: The CaCO3/miR-200c delivery system was evaluated in vitro (microscopy, transfection efficiency, biocompatibility) and miR-200c-induced in vivo alveolar bone formation was assessed via micro-computed tomography and histology. Results: CaCO3 nanoparticles significantly enhanced the transfection of plasmid DNA encoding miR-200c without inflammatory effects and sustained miR-200c expression. CaCO3/miR-200c treatment in vivo significantly increased bone formation in rat alveolar bone defects. Conclusion: CaCO3 nanoparticles enhance miR-200c delivery to accelerate alveolar bone formation, thereby demonstrating the application of CaCO3/miR-200c to craniofacial bone defects.


The restoration of craniofacial bone defects is surgically complex and requires the combined use of bone grafts and regenerative biomaterials. miRNAs are small biomolecules that have been shown to improve bone regeneration in large bone defects. The aim of this work was to develop a nanoparticle-based delivery system to sustain the release of miRNAs to improve the restoration of craniofacial bone defects. The results of this study demonstrated that CaCO3 nanoparticles extend the delivery of miRNAs to enhance bone formation in a craniofacial bone defect animal model in a therapeutically safe manner that improves upon conventional nanoparticle materials for bone regeneration. The findings attest to the regenerative properties of miRNAs and further indicate the potential application of CaCO3-based nanoparticles in restoring large bone defects.


Subject(s)
MicroRNAs , Nanoparticles , Animals , Rats , DNA , MicroRNAs/genetics , MicroRNAs/metabolism , Nanoparticles/metabolism , Osteogenesis , Plasmids/genetics , X-Ray Microtomography , Calcium Carbonate
SELECTION OF CITATIONS
SEARCH DETAIL
...