Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 621: 486-496, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29195197

ABSTRACT

Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of ß-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while ß-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams.


Subject(s)
Ecosystem , Plant Leaves , Rivers , Water Microbiology , Bacteria , Biodegradation, Environmental , Biomass , Enzymes/metabolism , Fungi , Portugal
2.
Environ Microbiol Rep ; 9(6): 756-765, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28914489

ABSTRACT

A consequence of drought in streams is the emersion of decomposing leaf litter, which may alter organic matter recycling. We assessed the effects of emersion on decomposition of black poplar leaves and associated microbes (microbial biomass, extracellular enzyme activities and microbial diversity) in two streams with distinct characteristics, in particular nutrients, temperature and oxygen levels. Leaf decomposition rates, fungal biomass and extracellular enzyme activities were lower in the most impacted stream (high nutrients and temperature, low oxygen). Also, the structure of fungal and bacterial communities differed between streams. Emersion strongly affected all microbial functional measures. Leaf decomposition, fungal biomass and extracellular enzyme activities were more sensitive at the most pristine site, while fungal reproduction and bacterial biomass production were more affected by emersion at the most impacted stream. Microbial community structure was strongly altered after emersion. Although similar effects on leaf-associated microbes were found in both streams, functional responses to emersion differed probably as a consequence of different initial microbial communities with different sensitivity to the drying stress. Our study highlights the need of understanding the effects of drought in streams suffering from different environmental perturbations, since responses to emersion appear to depend on the environmental context.


Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Biodegradation, Environmental , Droughts , Fungi/metabolism , Rivers/microbiology , Water Microbiology , Adaptation, Physiological , Bacteria/enzymology , Biomass , Enzymes/metabolism , Fungi/enzymology , Plant Leaves/microbiology , Populus/microbiology , Temperature
3.
FEMS Microbiol Ecol ; 92(8)2016 08.
Article in English | MEDLINE | ID: mdl-27288197

ABSTRACT

Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Invertebrates/metabolism , Lignin/metabolism , Plant Leaves/metabolism , Populus/metabolism , Rivers/microbiology , Animals , Bacteria/growth & development , Biodegradation, Environmental , Biomass , Climate , Ecosystem , Fungi/growth & development , Invertebrates/growth & development , Mediterranean Region , Plant Leaves/microbiology , Populus/microbiology , Seasons , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...