Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36677341

ABSTRACT

Phosphate-solubilizing bacteria (PSB) transform precipitated inorganic phosphorus into soluble orthophosphates. This study evaluated the efficiency of tricalcium and iron phosphate solubilization in Pikovskaya medium using five bacterial strains (A1, A2, A3, A5, and A6) cultured in acidic and alkaline pH levels. The bacterial strain that proved to be more efficient for P solubilization and was tolerant to pH variations was selected for assessing bacterial growth and P solubilization with glucose and sucrose in the culture medium. The bacterial strains were identified through 16S rRNA gene sequencing as Pseudomonas libanensis A1, Pseudomonas libanensis (A2), Bacillus pumilus (A3), Pseudomonas libanensis (A5), and Bacillus siamensis (A6). These five bacterial strains grew, tolerated pH changes, and solubilized inorganic phosphorus. The bacterial strain A3 solubilized FePO4 (4 mg L-1) and Ca3(PO4)2 (50 mg L-1). P solubilization was assayed with glucose and sucrose as carbon sources for A3 (Bacillus pumilus MN100586). After four culture days, Ca3(PO4)2 was solubilized, reaching 246 mg L-1 with sucrose in culture media. Using glucose as a carbon source, FePO4 was solubilized and reached 282 mg L-1 in six culture days. Our findings were: Pseudomonas libanensis, and Bacillus siamensis, as new bacteria, can be reported as P solubilizers with tolerance to acidic or alkaline pH levels. The bacterial strain B. pumilus grew using two sources of inorganic phosphorus and carbon, and it tolerated pH changes. For that reason, it is an ideal candidate for inorganic phosphorus solubilization and future production as a biofertilizer.

2.
Pol J Microbiol ; 69(3): 357-365, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33574865

ABSTRACT

The capacity of four bacterial strains isolated from productive soil potato fields to solubilize tricalcium phosphate on Pikovskaya agar or in a liquid medium was evaluated. A bacterial strain was selected to evaluate in vitro capacity of plant-growth promotion on Solanum tuberosum L. culture. Bacterial strain A3 showed the highest value of phosphate solubilization, reaching a 20 mm-diameter halo and a concentration of 350 mg/l on agar and in a liquid medium, respectively. Bacterial strain A3 was identified by 16S rDNA analysis as Bacillus pumilus with 98% identity; therefore, it is the first report for Bacillus pumilus as phosphate solubilizer. Plant-growth promotion assayed by in vitro culture of potato microplants showed that the addition of bacterial strain A3 increased root and stems length after 28 days. It significantly increased stem length by 79.3%, and duplicated the fresh weight of control microplants. In this paper, results reported regarding phosphorus solubilization and growth promotion under in vitro conditions represent a step forward in the use of innocuous bacterial strain biofertilizer on potato field cultures.


Subject(s)
Bacteria/metabolism , Phosphates/metabolism , Soil Microbiology , Solanum tuberosum/growth & development , Bacillus pumilus/classification , Bacillus pumilus/genetics , Bacillus pumilus/isolation & purification , Bacillus pumilus/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Kinetics , Phylogeny , Plant Roots/growth & development , Plant Stems/growth & development , RNA, Ribosomal, 16S/genetics , Rhizosphere , Solanum tuberosum/metabolism , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...