Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomater Sci ; 11(2): 641-654, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36504129

ABSTRACT

The goal of tissue decellularization is to efficiently remove unwanted cellular components, such as DNA and cellular debris, while retaining the complex structural and molecular milieu within the extracellular matrix (ECM). Decellularization protocols to date are centered on customized tissue-specific and lab-specific protocols that involve consecutive manual steps which results in variable and protocol-specific ECM material. The differences that result from the inconsistent protocols between decellularized ECMs affect consistency across batches, limit comparisons between results obtained from different laboratories, and could limit the transferability of the material for consistent laboratory or clinical use. The present study is the first proof-of-concept towards the development of a standardized protocol that can be used to derive multiple ECM biomaterials (powders and hydrogels) via a previously established automated system. The automated decellularization method developed by our group was used due to its short decellularization time (4 hours) and its ability to reduce batch-to-batch variability. The ECM obtained using this first iteration of a unified protocol was able to produce ECM hydrogels from skin, lung, muscle, tendons, cartilage, and laryngeal tissues. All hydrogels formed in this study were cytocompatible and showed gelation and rheological properties consistent with previous ECM hydrogels. The ECMs also showed unique proteomic composition. The present study represents the first step towards developing standardized protocols that can be used on multiple tissues in a fast, scalable, and reproducible manner.


Subject(s)
Proteomics , Tissue Engineering , Tissue Engineering/methods , Extracellular Matrix/chemistry , Hydrogels/chemistry , Biocompatible Materials/analysis , Tissue Scaffolds
2.
Tissue Eng Part A ; 28(5-6): 270-282, 2022 03.
Article in English | MEDLINE | ID: mdl-34375125

ABSTRACT

Muscle and tendon injuries are prevalent and range from minor sprains and strains to traumatic, debilitating injuries. However, the interactions between these tissues during injury and recovery remain unclear. Three-dimensional tissue models that incorporate both tissues and a physiologically relevant junction between muscle and tendon may help understand how the two tissues interact. Here, we use tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue, resulting in junction-specific features. The ECM materials were derived from the Achilles tendon and gastrocnemius muscle, decellularized, and processed to form tissue-specific pre-hydrogel digests. The ECM materials were unique in respect to protein composition and included many types of ECM proteins, not just collagens. After digestion and gelation, ECM hydrogels had similar complex viscosities that were less than type I collagen hydrogels at the same concentration. C2C12 myoblasts and tendon fibroblasts were cultured in tissue-specific ECM conditioned media or encapsulated in tissue-specific ECM hydrogels to determine cell-matrix interactions and the effects on a muscle-tendon junction marker, paxillin. The ECM conditioned media had only a minor effect on the upregulation of paxillin in cells cultured in monolayer. However, cells cultured within ECM hydrogels had 50-70% higher paxillin expression than cells cultured in type I collagen hydrogels. Contraction of the ECM hydrogels varied by the type of ECM used. Subsequent experiments with a varying density of type I collagen (and thus contraction) showed no correlation between paxillin expression and the amount of gel contraction, suggesting that a constituent of the ECM was the driver of paxillin expression in the ECM hydrogels. In addition, another junction marker, type XXII collagen, had similar expression patterns as paxillin, with smaller effect sizes. Using tissue-specific ECM allowed for the de-construction of the cell-matrix interactions similar to muscle-tendon junctions to study the expression of myotendinous junction-specific proteins. Impact statement The muscle-tendon junction is an important feature of muscle-tendon units; however, despite crosstalk between the two tissue types, the junction is often overlooked in current research. Deconstructing the cell-matrix interactions will provide the opportunity to study significant junction-specific features and markers that should be included in tissue models of the muscle-tendon unit, while gaining a deeper understanding of the natural junction. This research aims at informing future methods to engineer a more relevant multi-tissue platform to study the muscle-tendon unit.


Subject(s)
Collagen Type I , Hydrogels , Collagen/metabolism , Collagen Type I/metabolism , Culture Media, Conditioned , Extracellular Matrix/metabolism , Muscles , Paxillin/metabolism , Tendons/metabolism
3.
Biomed Mater ; 17(1)2021 11 26.
Article in English | MEDLINE | ID: mdl-34731852

ABSTRACT

Extracellular matrix (ECM) is a complex structure composed of bioactive molecules representative of the local tissue microenvironment. Decellularized ECM biomaterials harness these biomolecules for regenerative medicine applications. One potential therapeutic application is the use of vocal fold (VF) specific ECM to restore the VFs after injury. ECM scaffolds are derived through a process of decellularization, which aims to remove unwanted immunogenic biomolecules (e.g. DNA) while preserving the composition of the ECM. The effectiveness of the decellularization is typically assessed at the end by quantifying ECM attributes such as final dsDNA content. However, batch-to-batch variability in ECM manufacturing remains a significant challenge for the standardization, cost-effectiveness, and scale-up process. The limited number of tools available for in-process control heavily restricts the uncovering of the correlations between decellularization process parameters and ECM attributes. In this study, we developed a technique applicable to both the classical batch method and semi-continuous decellularization systems to trace the decellularization of two laryngeal tissues in real-time. We hypothesize that monitoring the bioreactor's effluent absorbance at 260 nm as a function of time will provide a representative DNA release profile from the tissue and thus allow for process optimization. The DNA release profiles were obtained for laryngeal tissues and were successfully used to optimize the derivation of VF lamina propria-ECM (auVF-ECM) hydrogels. This hydrogel had comparable rheological properties to commonly used biomaterials to treat VF injuries. Also, the auVF-ECM hydrogel promoted the down-regulation of CCR7 by THP-1 macrophages upon lipopolysaccharide stimulationin vitrosuggesting some anti-inflammatory properties. The results show that absorbance profiles are a good representation of DNA removal during the decellularization process thus providing an important tool to optimize future protocols.


Subject(s)
Biocompatible Materials , Extracellular Matrix , Extracellular Matrix/chemistry , Hydrogels , Regenerative Medicine , Spectrum Analysis , Tissue Engineering/methods , Tissue Scaffolds
4.
Biomed Mater ; 16(2): 025006, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33445160

ABSTRACT

Surgical meshes are commonly used to repair defects and support soft tissues. Macrophages (Mφs) are critical cells in the wound healing process and are involved in the host response upon foreign biomaterials. There are various commercially available permanent and absorbable meshes used by surgeons for surgical interventions. Polypropylene (PP) meshes represent a permanent biomaterial that can elicit both inflammatory and anti-inflammatory responses. In contrast, poly-4-hydroxybutyrate (P4HB) based meshes are absorbable and linked to positive clinical outcomes but have a poorly characterized immune response. This study evaluated the in vitro targeted transcriptomic response of human Mφs seeded for 48 h on PP and P4HB surgical meshes. The in vitro measured response from human Mφs cultured on P4HB exhibited inflammatory and anti-inflammatory gene expression profiles typically associated with wound healing, which aligns with in vivo animal studies from literature. The work herein provides in vitro evidence for the early transcriptomic targeted signature of human Mφs upon two commonly used surgical meshes. The findings suggest a transition from an inflammatory to a non-inflammatory phenotype by P4HB as well as an upregulation of genes annotated under the pathogen response pathway.


Subject(s)
Anti-Inflammatory Agents/chemistry , Biocompatible Materials , Cell Culture Techniques , Macrophages/drug effects , Macrophages/metabolism , Polypropylenes/chemistry , Surgical Mesh , Transcriptome , Biocompatible Materials/chemistry , Cell Differentiation , Cell Separation , Cells, Cultured , Flow Cytometry , Gene Expression Profiling , Humans , Hydroxybutyrates , Immunity, Innate , In Vitro Techniques , Inflammation , Materials Testing , Monocytes/cytology , Phenotype , Prostheses and Implants , RNA/metabolism , Tissue Scaffolds , Treatment Outcome , Up-Regulation , Wound Healing
5.
Tissue Eng Part A ; 27(15-16): 1008-1022, 2021 08.
Article in English | MEDLINE | ID: mdl-33003982

ABSTRACT

Mast cells (MCs) are pro-inflammatory tissue-resident immune cells that play a key role in inflammation. MCs circulate in peripheral blood as progenitors and undergo terminal differentiation in the tissue microenvironment where they can remain for many years. This in situ maturation results in tissue- and species-specific MC phenotypes, culminating in significant variability in response to environmental stimuli. There are many challenges associated with studying mature tissue-derived MCs, particularly in humans. In cases where cultured MCs are able to differentiate in two-dimensional in vitro cultures, there remains an inability for full maturation. Extracellular matrix (ECM) scaffolds provide for a more physiologically relevant environment for cells in vitro and have been shown to modulate the response of other immune cells such as T cells, monocytes, and macrophages. To improve current in vitro testing platforms of MCs and to assess future use of ECM scaffolds for MC regulation, we studied the in vitro response of human MCs cultured on decellularized porcine dermis hydrogels (dermis extracellular matrix hydrogel [dECM-H]). This study investigated the effect of dECM-H on cellular metabolic activity, cell viability, and receptor expression compared to collagen type I hydrogel (Collagen-H). Human MCs showed different metabolic activity when cultured in the dECM-H and also upregulated immunoglobulin E (IgE) receptors associated with MC maturation/activation compared to collagen type I. These results suggest an overall benefit in the long-term culture of human MCs in the dECM-H compared to Collagen-H providing important steps toward a model that is more representative of in vivo conditions. Graphical abstract [Formula: see text] Impact statement Mast cells (MCs) are difficult to culture in vitro as current culture conditions and substrates fail to promote similar phenotypic features observed in vivo. Extracellular matrix (ECM)-based biomaterials offer three-dimensional, tissue-specific environments that more closely resemble in vivo conditions. Our study explores the use of dermal ECM hydrogels for MC culture and shows significant upregulation of metabolic activity, cell viability, and gene expression of markers associated with MC maturation or activation compared to collagen type I-hydrogel and tissue culture plastic controls at 7 days. These results are among the first to describe MC behavior in response to ECM hydrogels.


Subject(s)
Extracellular Matrix , Mast Cells , Animals , Cell Differentiation , Collagen , Humans , Hydrogels , Swine
6.
ACS Biomater Sci Eng ; 6(7): 4200-4213, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33463339

ABSTRACT

Decellularized extracellular matrix (ECM) scaffolds derived from tissues and organs are complex biomaterials used in clinical and research applications. A number of decellularization protocols have been described for ECM biomaterials derivation, each adapted to a particular tissue and use, restricting comparisons among materials. One of the major sources of variability in ECM products comes from the tissue source and animal age. Although this variability could be minimized using established tissue sources, other sources arise from the decellularization process itself. Overall, current protocols require manual work and are poorly standardized with regard to the choice of reagents, the order by which they are added, and exposure times. The combination of these factors adds variability affecting the uniformity of the final product between batches. Furthermore, each protocol needs to be optimized for each tissue and tissue source making tissue-to-tissue comparisons difficult. Automation and standardization of ECM scaffold development constitute a significant improvement to current biomanufacturing techniques but remains poorly explored. This study aimed to develop a biofabrication method for fast and automated derivation of raw material for ECM hydrogel production while preserving ECM composition and controlling lot-to-lot variability. The main result was a closed semibatch bioreactor system with automated dosing of decellularization reagents capable of deriving ECM material from pretreated soft tissues. The ECM was further processed into hydrogels to demonstrate gelation and cytocompatibility. This work presents a versatile, scalable, and automated platform for the rapid production of ECM scaffolds.


Subject(s)
Extracellular Matrix , Tissue Scaffolds , Animals , Biocompatible Materials , Bioreactors , Hydrogels , Swine
7.
ACS Biomater Sci Eng ; 6(3): 1690-1703, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455360

ABSTRACT

The vocal fold lamina propria (VFLP), one of the outermost layers of the vocal fold (VF), is composed of tissue-specific extracellular matrix (ECM) proteins and is highly susceptible to injury. Various biomaterials have been clinically tested to treat voice disorders (e.g., hydrogels, fat, and hyaluronic acid), but satisfactory recovery of the VF functionality remains elusive. Fibrosis or scar formation in the VF is a major challenge, and the development and refinement of novel therapeutics that promote the healing and normal function of the VF are needed. Injectable hydrogels derived from native tissues have been previously reported with major advantages over synthetic hydrogels, including constructive tissue remodeling and reduced scar tissue formation. This study aims to characterize the composition of a decellularized porcine VFLP-ECM scaffold and the cytocompatibility and potential antifibrotic properties of a hydrogel derived from VFLP-ECM. In addition, we isolated potential matrix-bound vesicles (MBVs) and macromolecules from the VFLP-ECM that also downregulated smooth muscle actin ACTA2 under transforming growth factor-beta 1 (TGF-ß1) stimulation. The results provide evidence of the unique protein composition of the VFLP-ECM and the potential link between the components of the VFLP-ECM and the inhibition of TGF-ß1 signaling observed in vitro when transformed into injectable forms.


Subject(s)
Biocompatible Materials , Vocal Cords , Animals , Biocompatible Materials/pharmacology , Fibroblasts , Mucous Membrane , Swine , Transforming Growth Factor beta1
9.
Mater Sci Eng C Mater Biol Appl ; 65: 369-78, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27157764

ABSTRACT

Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic-isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture.


Subject(s)
Elastomers/chemistry , Liquid Crystals/chemistry , Nanocomposites/chemistry , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Mice , Microscopy, Confocal , NIH 3T3 Cells , Nanocomposites/toxicity , Temperature
10.
PLoS One ; 11(3): e0149271, 2016.
Article in English | MEDLINE | ID: mdl-26992117

ABSTRACT

The widespread distribution of fungal infections, with their high morbidity and mortality rate, is a global public health problem. The increase in the population of immunocompromised patients combined with the selectivity of currents treatments and the emergence of drug-resistant fungal strains are among the most imperative reasons to develop novel antifungal formulations. Antimicrobial ß-peptides are peptidomimetics of natural antimicrobial peptides (AMPs), which have been proposed as developmental platforms to enhance the AMPs selectivity and biostability. Their tunability allows the design of sequences with remarkable activity against a wide spectrum of microorganisms such as the human pathogenic Candida spp., both in planktonic and biofilm morphology. However, the ß-peptide's effect on surrounding host cells remains greatly understudied. Assessments have mainly relied on the extent of hemolysis that a candidate peptide is able to cause. This work investigated the in vitro cytotoxicity of various ß-peptides in the Caco-2 and HepG2 mammalian cell lines. Results indicated that the cytotoxic effect of the ß-peptides was influenced by cell type and was also correlated to structural features of the peptide such as hydrophobicity. We found that the selectivity of the most hydrophobic ß-peptide was 2-3 times higher than that of the least hydrophobic one, for both cell types according to the selectivity index parameter (IC50/MIC). The IC50 of Caco-2 and HepG2 increased with hydrophobicity, which indicates the importance of testing putative therapeutics on different cell types. We report evidence of peptide-cell membrane interactions in Caco-2 and HepG2 using a widely studied ß-peptide against C. albicans.


Subject(s)
Antifungal Agents/pharmacology , Caco-2 Cells , Colon/drug effects , Hep G2 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Liver/drug effects
11.
J Pept Sci ; 21(12): 853-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26470850

ABSTRACT

Fungal infections are a pressing concern for human health worldwide, particularly for immunocompromised individuals. Current challenges such as the elevated toxicity of common antifungal drugs and the emerging resistance towards these could be overcome by multidrug therapy. Natural antimicrobial peptides, AMPs, in combination with other antifungal agents are a promising avenue to address the prevailing challenges. However, they possess limited biostability and susceptibility to proteases, which has significantly hampered their development as antifungal therapies. ß-peptides are synthetic materials designed to mimic AMPs while allowing high tunability and increased biostability. In this work, we report for the first time the inhibition achieved in Candida albicans when treated with a mixture of a ß-peptide model and fluconazole or ketoconazole. This combination treatment enhanced the biological activity of these azoles in planktonic and biofilm Candida, and also in a fluconazole-resistant strain. Furthermore, the in vitro cytotoxicity of the dual treatment was evaluated towards the human hepatoma cell line, HepG2, a widely used model derived from liver tissue, which is primarily affected by azoles. Analyses based on the LA-based method and the mass-action law principle, using a microtiter checkerboard approach, revealed synergism of the combination treatment in the inhibition of planktonic C. albicans. The dual treatment proved to be fungicidal at 48 and 72 h. Interestingly, it was also found that the viability of HepG2 was not significantly affected by the dual treatments. Finally, a remarkable enhancement in the inhibition of the highly azole-resistant biofilms and fluconazole resistant C. albicans strain was obtained.


Subject(s)
Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Candida albicans/drug effects , Fluconazole/pharmacology , Ketoconazole/pharmacology , Biofilms/drug effects , Candida albicans/physiology , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Fungal/drug effects , Drug Synergism , Hep G2 Cells , Humans , In Vitro Techniques , Plankton/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...