Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 11(23): e15861, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38086735

ABSTRACT

Pulmonary mechanics has been traditionally viewed as determined by lung size and physical factors such as frictional forces and tissue viscoelastic properties, but few information exists regarding potential influences of cytokines and hormones on lung function. Concentrations of 28 cytokines and hormones were measured in saliva from clinically healthy scholar children, purposely selected to include a wide range of body mass index (BMI). Lung function was assessed by impulse oscillometry, spirometry, and diffusing capacity for carbon monoxide, and expressed as z-score or percent predicted. Ninety-six scholar children (55.2% female) were enrolled. Bivariate analysis showed that almost all lung function variables correlated with one or more cytokine or hormone, mainly in boys, but only some of them remained statistically significant in the multiple regression analyses. Thus, after adjusting by height, age, and BMI, salivary concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF) in boys were associated with zR5-R20 and reactance parameters (zX20, zFres, and zAX), while glucagon inversely correlated with resistances (zR5 and zR20). Thus, in physiological conditions, part of the mechanics of breathing might be influenced by some cytokines and hormones, including glucagon and GM-CSF. This endogenous influence is a novel concept that warrants in-depth characterization.


Subject(s)
Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor , Male , Child , Humans , Female , Cross-Sectional Studies , Glucagon , Lung
2.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38111542

ABSTRACT

Background: Published reference equations for impulse oscillometry (IOS) usually encompass a specific age group but not the entire lifespan. This may lead to discordant predicted values when two or more non-coincident equations can be applied to the same person, or when a person moves from one equation to the next non-convergent equation as he or she gets older. Thus, our aim was to provide a single reference equation for each IOS variable that could be applied from infancy to old age. Methods: This was an ambispective cross-sectional study in healthy nonsmokers, most of whom lived in Mexico City, who underwent IOS according to international standards. A multivariate piecewise linear regression, also known as segmented regression, was used to obtain reference equations for each IOS variable. Results: In a population of 830 subjects (54.0% female) aged 2.7 to 90 years (54.8% children ≤12 years), segmented regression estimated two breakpoints for age in almost all IOS variables, except for R5-R20 in which only one breakpoint was detected. With this approach, multivariate regressions including sex, age, height and body mass index as independent variables were constructed, and coefficients for calculating predicted value, lower and upper limits of normal, percentage of predicted and z-score were obtained. Conclusions: Our study provides IOS reference equations that include the major determinants of lung function, i.e. sex, age, height and body mass index, that can be easily implemented for subjects of almost any age.

3.
Cytokine ; 138: 155379, 2021 02.
Article in English | MEDLINE | ID: mdl-33271384

ABSTRACT

BACKGROUND: Blood has been the usual biological fluid for measuring analytes, but there is mounting evidence that saliva may be also useful for detecting cytokines in a noninvasive way. Thus, in this study we aimed to determine concentration of cytokines and other analytes in saliva from a population of healthy children. METHODS: We collected un-stimulated whole saliva samples from clinically healthy children, and concentration of 17 cytokines and 12 other analytes were measured in supernatants. All values were adjusted by albumin content and were log-transformed before multivariate statistical analysis. RESULTS: We included 114 children (53.5% females) between 6.0 and 11.9 years old. The highest concentrations (medians, pg/µg albumin) were seen for visfatin (183.70) and adiponectin (162.26) and the lowest for IL-13 and IL-2 (~0.003). Albumin concentration was associated with age (rS = 0.39, p < 0.001). In the multivariate analysis, five analytes (C peptide, ghrelin, GLP-1, glucagon, leptin) inversely correlated with age and positively with height-for-age. Age was also positively associated with PAI-1, while height-for-age was also positively associated with insulin and visfatin. Finally, BMI-for-age had a positive correlation with GM-CSF and insulin. CONCLUSIONS: Herein, we provided concentration values for 29 analytes in saliva from healthy children that may be useful as preliminary reference framework in the clinical research setting.


Subject(s)
Cytokines/metabolism , Saliva/metabolism , Adiponectin/biosynthesis , Age Factors , Body Height , C-Peptide/biosynthesis , Child , Cytokines/biosynthesis , Female , Ghrelin/biosynthesis , Glucagon/biosynthesis , Glucagon-Like Peptide 1/biosynthesis , Humans , Insulin/metabolism , Interleukin-13/biosynthesis , Interleukin-2/biosynthesis , Leptin/biosynthesis , Male , Multivariate Analysis , Nicotinamide Phosphoribosyltransferase/biosynthesis , Reference Values
4.
Ann Am Thorac Soc ; 16(2): 240-247, 2019 02.
Article in English | MEDLINE | ID: mdl-30517026

ABSTRACT

RATIONALE: Single-breath diffusing capacity of the lung for carbon monoxide (DlCOsb) values are used to evaluate gas exchange; however, the quality of maneuvers performed by children has not been evaluated, and reference values for young people living at moderate altitudes are not well established. OBJECTIVES: Our objectives were 1) to determine whether DlCOsb maneuvers performed by a pediatric population would meet 2017 European Respiratory Society/American Thoracic Society (ERS/ATS) quality control standards; and 2) to report normal DlCOsb values for Mexican/Latino children and adolescents living at moderate altitudes. METHODS: This study involved healthy young people 4-20 years of age from the metropolitan area of Mexico City (2,240 m above sea level) who were recruited in schools from July 2014 to August 2017. DlCOsb testing was performed according to the 2005 ATS/ERS standards, and the quality control of each maneuver was analyzed according to the 2017 ERS/ATS standards. We constructed models for DlCOsb with linear and quadratic terms for weight, height, and age as independent variables using shrinkage statistics, variance inflation factors, the Akaike information criterion, and R2 to compare the results of different models. RESULTS: Results were obtained for 420 individuals (53% boys) with a mean age of 11.7 ± 4.5 standard deviation (SD) years; 47% of maneuvers from children age 4-6 years were grade A (13% grade B), and 90% of those in children older than 13 years were grade A or B. Forty-six percent of the subjects had a DlCOsb repeatability of <1 ml/min/mm Hg. The mean DlCOsb was higher for boys than for girls (32.4 ± 13.6 [SD] vs. 24.1 ± 7.5 ml/min/mm Hg, respectively). The reference equation for boys was DlCOsb = exp(1.63469 + [0.03251 × age] + [0.00846 × height] + [0.00304 × weight]), R2 = 0.87; for girls, the best equation was DlCOsb = exp(1.56516 + [0.0193 × age] + [0.00893 × height] + [0.00273 × weight]), R2 = 0.75. The single-breath transfer coefficient of the lung for carbon monoxide remained constant with age and height, with a lower limit of normal of 6.5 ml/min/mm Hg/L in boys and 5.4 ml/min/mm Hg/L in girls. Measured DlCOsb was higher than predicted by other authors (P < 0.001 by paired t test). CONCLUSIONS: Individuals 4-20 years of age can complete high-quality DlCOsb tests. Children and adolescents living at 2,240 m have higher DlCOsb values than those living at sea level. Reference equations for DlCOsb obtained at sea level are poor predictors of the values measured at moderate altitude.


Subject(s)
Altitude , Carbon Monoxide/metabolism , Lung/physiology , Pulmonary Diffusing Capacity , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Male , Mexico , Quality Control , Reference Values , Regression Analysis , Young Adult
5.
Respir Care ; 62(9): 1156-1165, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28765495

ABSTRACT

BACKGROUND: The impulse oscillometry system (IOS) measures the impedance (Z) of the respiratory system, but proper interpretation of its results requires adequate reference values. The objectives of this work were: (1) to validate the reference equations for the IOS published previously by our group and (2) to compare the adjustment of new available reference equations for the IOS from different countries in a sample of healthy children. METHODS: Subjects were healthy 4-15-y-old children from the metropolitan area of Mexico City, who performed an IOS test. The functional IOS parameters obtained were compared with the predicted values from 12 reference equations determined in studies of different ethnic groups. The validation methods applied were: analysis of the differences between measured and predicted values for each reference equation; correlation and concordance coefficients; adjustment by Z-score values; percentage of predicted value; and the percentage of patients below the lower limit of normality or above the upper limit of normality. RESULTS: Of the 224 participants, 117 (52.3%) were girls, and the mean age was 8.6 ± 2.3 y. The equations that showed the best adjustment for the different parameters were those from the studies by Nowowiejska et al (2008) and Gochicoa et al (2015). The equations proposed by Frei et al (2005), Hellinckx et al (1998), Kalhoff et al (2011), Klug and Bisgaard (1998), de Assumpção et al (2016), and Dencker et al (2006) overestimated the airway resistance of the children in our sample, whereas the equation of Amra et al (2008) underestimated it. In the analysis of the lower and upper limits of normality, Gochicoa et al equation was the closest, since 5% of subjects were below or above percentiles 5 and 95, respectively. The study found that, in general, all of the equations showed greater error at the extremes of the age distribution. CONCLUSIONS: Because of the robust adjustment of the present study reference equations for the IOS, it can be recommended for both clinical and research purposes in our population. The differential adjustment of other equations underlines the need to obtain local reference values.


Subject(s)
Lung/physiology , Oscillometry/statistics & numerical data , Plethysmography, Impedance/statistics & numerical data , Adolescent , Airway Resistance/physiology , Child , Child, Preschool , Female , Healthy Volunteers , Humans , Male , Mexico , Oscillometry/standards , Plethysmography, Impedance/standards , Reference Standards , Reference Values , Reproducibility of Results , Respiratory Function Tests/methods
6.
J Clin Monit Comput ; 30(4): 445-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26174797

ABSTRACT

Fraction of exhaled nitric oxide (FeNO) is a marker of eosinophilic airway inflammation. Altitude above sea level can affect measurements of this index, but there is only limited information regarding the diurnal variation (ante meridiem vs. post meridiem) and reproducibility of FeNO on consecutive days at moderate altitudes. To evaluate the diurnal variability of FeNO and assess its reproducibility over five consecutive days in healthy individuals living at 2240 m, and to compare the FeNO readings taken with two different analyzers. Healthy non-smoking adults were measured using NIOX MINO(®) or NOA 280i(®) devices. One group (n = 10) had readings taken morning and afternoon for five consecutive days with the NIOX MINO(®) equipment; while the second group (n = 17) was measured on only one morning but by both the electrochemical analyzer (NIOX MINO(®)) and the chemiluminescence method (NOA 280i(®)). The study group consisted of 27 subjects aged 28.7 ± 6 years. Morning and afternoon FeNO measurements were 15.2 ± 7.5 ppb and 15.2 ± 7.9 ppb (p = 0.9), respectively. The coefficient of variation (CV) of these measurements (a.m. vs. p.m.) was 10.7 %, and the coefficient of repeatability (CR), 4.2 ppb. The concordance correlation coefficient (CCC) between the two measures (morning vs. afternoon) was 0.91. The CV and CR of the five morning readings were 15.4 % and 4.3 ppb, respectively; while those of the five afternoon measures were 13.6 % and 3.5 ppb, respectively. The CCC between the NIOX MINO(®) equipment and the NOA-280i(®) device was 0.8, with 95 % limits of agreement of -8.35 to 0.29 ppb. In adults living at 2240 m above sea level, FeNO measurements show minimal diurnal variation, and readings are reproducible (<15 %) over a period of at least five consecutive days; however, the FeNO measurements obtained with the NIOX MINO(®) and NOA 280i(®) devices are not interchangeable due to the wide limits of agreement recorded.


Subject(s)
Altitude , Nitric Oxide/metabolism , Adult , Asthma/metabolism , Circadian Rhythm , Cross-Sectional Studies , Eosinophilia/metabolism , Exhalation , Female , Healthy Volunteers , Humans , Male , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...