Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Urology ; 112: 225.e1-225.e7, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29154981

ABSTRACT

OBJECTIVE: To investigate perturbations in downstream signaling pathway activation and potential resistance mechanisms to epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2) inhibition in cell line models of bladder cancer. METHODS: We undertook a structured screening approach by phosphokinase array, followed by validation steps, to detect activated downstream signaling pathway nodes after therapeutic inhibition of EGFR or HER2 in bladder cancer cell lines. RESULTS: Erlotinib treatment of RT112 cells induced phosphorylation of 9 activated phosphoprotein targets (p38 mitogen-activated protein kinase [MAPK] [Thr180/Tyr182], GSK-3α/ß [Ser21/9], MEK1/2 [Ser218/222, Ser222/226], Akt (protein kinase B) [Ser473], TOR [target of rapamycin] [Ser2448], Src [Tyr419], p27 [Thr198], p27 [Thr157], and PLCγ-1 [Tyr783]), whereas STAT4 (signal transducer and activator of transcription 4) (Tyr693) phosphorylation was reduced. Of these, p38 MAPK phosphorylation was confirmed to occur in response to inhibition of either EGFR or HER2 signaling through multiple validation steps, including differing bladder cancer cell lines (RT112, UM-UC-3, and T24) and methods of receptor pathway inhibition (erlotinib, lapatinib, and siRNA depletion of EGFR or HER2). Chemical inhibition of p38 MAPK with SB203580 led to inhibition of proliferation in RT112, UM-UC-3, and T24 cell lines (IC50 20.85, 76.78, and 79.12 µM, respectively). Fractional effect analyses indicated a synergistic interaction for inhibition of cell proliferation when combining SB203580 with lapatinib. CONCLUSION: p38 MAPK is a potential therapeutic target in bladder cancer and this strategy warrants further development in this disease. It may also allow combination therapy strategies to be developed in conjunction with EGFR or HER2 inhibition.


Subject(s)
Antineoplastic Agents/therapeutic use , Erlotinib Hydrochloride/therapeutic use , Lapatinib/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/physiology , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/physiology , Humans , Signal Transduction , Urinary Bladder Neoplasms/etiology
2.
Chem Biol ; 22(9): 1159-64, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26320860

ABSTRACT

Irreversible inhibitors that modify cysteine or lysine residues within a protein kinase ATP binding site offer, through their distinctive mode of action, an alternative to ATP-competitive agents. 4-((6-(Cyclohexylmethoxy)-9H-purin-2-yl)amino)benzenesulfonamide (NU6102) is a potent and selective ATP-competitive inhibitor of CDK2 in which the sulfonamide moiety is positioned close to a pair of lysine residues. Guided by the CDK2/NU6102 structure, we designed 6-(cyclohexylmethoxy)-N-(4-(vinylsulfonyl)phenyl)-9H-purin-2-amine (NU6300), which binds covalently to CDK2 as shown by a co-complex crystal structure. Acute incubation with NU6300 produced a durable inhibition of Rb phosphorylation in SKUT-1B cells, consistent with it acting as an irreversible CDK2 inhibitor. NU6300 is the first covalent CDK2 inhibitor to be described, and illustrates the potential of vinyl sulfones for the design of more potent and selective compounds.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Purines/chemistry , Purines/pharmacology , Adenosine Triphosphate/metabolism , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/metabolism , Drug Design , Humans , Models, Molecular , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Purines/chemical synthesis , Structure-Activity Relationship , Sulfones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...