Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(7): 2158-2169, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36930801

ABSTRACT

The rapid global spread of the SARS-CoV-2 virus facilitated the development of novel direct-acting antiviral agents (DAAs). The papain-like protease (PLpro) has been proposed as one of the major SARS-CoV-2 targets for DAAs due to its dual role in processing viral proteins and facilitating the host's immune suppression. This dual role makes identifying small molecules that can effectively neutralize SARS-CoV-2 PLpro activity a high-priority task. However, PLpro drug discovery faces a significant challenge due to the high mobility and induced-fit effects in the protease's active site. Herein, we virtually screened the ZINC20 database with Deep Docking (DD) to identify prospective noncovalent PLpro binders and combined ultra-large consensus docking with two pharmacophore (ph4)-filtering strategies. The analysis of active compounds revealed their somewhat-limited diversity, likely attributed to the induced-fit nature of PLpro's active site in the crystal structures, and therefore, the use of rigid docking protocols poses inherited limitations. The top hits were assessed against recombinant viral proteins and live viruses, demonstrating desirable inhibitory activities. The best compound VPC-300195 (IC50: 15 µM) ranks among the top noncovalent PLpro inhibitors discovered through in silico methodologies. In the search for novel SARS-CoV-2 PLpro-specific chemotypes, the identified inhibitors could serve as diverse templates for the development of effective noncovalent PLpro inhibitors.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Models, Molecular , Prospective Studies , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Proteins/chemistry , Peptide Hydrolases
2.
Nat Commun ; 12(1): 2173, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846289

ABSTRACT

The closely related inhibitory killer-cell immunoglobulin-like receptors (KIR), KIR2DL2 and KIR2DL3, regulate the activation of natural killer cells (NK) by interacting with the human leukocyte antigen-C1 (HLA-C1) group of molecules. KIR2DL2, KIR2DL3 and HLA-C1 are highly polymorphic, with this variation being associated with differences in the onset and progression of some human diseases. However, the molecular bases underlying these associations remain unresolved. Here, we determined the crystal structures of KIR2DL2 and KIR2DL3 in complex with HLA-C*07:02 presenting a self-epitope. KIR2DL2 differed from KIR2DL3 in docking modality over HLA-C*07:02 that correlates with variabilty of recognition of HLA-C1 allotypes. Mutagenesis assays indicated differences in the mechanism of HLA-C1 allotype recognition by KIR2DL2 and KIR2DL3. Similarly, HLA-C1 allotypes differed markedly in their capacity to inhibit activation of primary NK cells. These functional differences derive, in part, from KIR2DS2 suggesting KIR2DL2 and KIR2DL3 binding geometries combine with other factors to distinguish HLA-C1 functional recognition.


Subject(s)
HLA-C Antigens/metabolism , Molecular Docking Simulation , Receptors, KIR2DL2/chemistry , Receptors, KIR2DL2/metabolism , Receptors, KIR2DL3/chemistry , Receptors, KIR2DL3/metabolism , HEK293 Cells , Humans , Killer Cells, Natural/immunology , Ligands , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptides/chemistry , Protein Binding , Protein Interaction Mapping
3.
J Biol Chem ; 290(16): 10460-71, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25759384

ABSTRACT

The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.


Subject(s)
HLA-B Antigens/chemistry , HLA-G Antigens/chemistry , Receptors, KIR2DL4/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , HLA-G Antigens/genetics , HLA-G Antigens/metabolism , Models, Molecular , Molecular Sequence Data , Moths/cytology , Moths/metabolism , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, KIR2DL4/genetics , Receptors, KIR2DL4/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
4.
Avicenna J Med Biotechnol ; 5(1): 42-53, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23626876

ABSTRACT

BACKGROUND: The rise of opportunistic fungal infections highlights the need for development of new antimicrobial agents. Antimicrobial Peptides (AMPs) and Antifungal Peptides (AFPs) are among the agents with minimal resistance being developed against them, therefore they can be used as structural templates for design of new antimicrobial agents. METHODS: In the present study four antifungal peptidomimetic structures named C1 to C4 were designed based on plant defensin of Pisum sativum. Minimum inhibitory concentrations (MICs) for these structures were determined against Aspergillus niger N402, Candida albicans ATCC 10231, and Saccharomyces cerevisiae PTCC 5052. RESULTS: C1 and C2 showed more potent antifungal activity against these fungal strains compared to C3 and C4. The structure C2 demonstrated a potent antifungal activity among them and could be used as a template for future study on antifungal peptidomemetics design. Sequences alignments led to identifying antifungal decapeptide (KTCENLADTY) named KTC-Y, which its MIC was determined on fungal protoplast showing 25 (µg/ml) against Aspergillus fumigatus Af293. CONCLUSION: The present approach to reach the antifungal molecules seems to be a powerful approach in design of bioactive agents based on AMP mimetic identification.

5.
Science ; 339(6123): 1080-3, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23393091

ABSTRACT

HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl-transverse relaxation-optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.


Subject(s)
Adenosine Triphosphatases/chemistry , Heat-Shock Proteins/chemistry , Models, Chemical , Protein Refolding , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Heat-Shock Proteins/genetics , Hydrolysis , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Interaction Domains and Motifs , Protein Interaction Maps , Protein Multimerization , Protein Structure, Tertiary , Protein Transport , Thermus thermophilus
SELECTION OF CITATIONS
SEARCH DETAIL
...