Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Chem Biodivers ; : e202401452, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136606

ABSTRACT

Baccharis mattogrosensis is a species from Asteraceae which has been used in Brazilian folk medicine to treatment of several illnesses, including those caused by parasites. In the present work, the MeOH extract of aerial parts of B. mattogrosensis was subjected to chromatographic fractionation to afford three flavonoids: apigenin (1), quercetin (2), and kaempferol (3) as well as a mixture three chlorogenic acids: 3,4-O-dicaffeoylquinic (4), 3,5-O-dicaffeoylquinic (5), and 4,5-O-dicaffeoylquinic (6) acids. When tested in vitro, kaempferol (3) exhibited activity against Schistosoma mansoni with EC50=81.86 µM, whereas compounds 1, 2, 4-6 showed to be inactives. Considering this result, the effects of kaempferol (3) against S. mansoni infection using an experimental approach (in vivo assay) was tested at first time. Using a single oral dose (400 mg/kg) of kaempferol (3) to S. mansoni-infected mice reduced the worm burden by 25.5 %. Similarly, the number of eggs, which are responsible for a variety of pathologies and transmission of schistosomiasis, was decreased by 28.8 % in treated mice. Collectively, although kaempferol (3) is partially active when administered orally in a mouse model of schistosomiasis, our results suggest that this compound could be, in future studies, administered in different forms, such as nanoformulation.

2.
ACS Omega ; 9(28): 31159-31165, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035884

ABSTRACT

Infections caused by parasitic helminths pose significant health concerns for both humans and animals. The limited efficacy of existing drugs underscores the urgent need for novel anthelmintic agents. Given the reported potential of antihistamines against various parasites, including worms, this study conducted a screening of clinically available antihistamines against Angiostrongylus cantonensis-a nematode with widespread implications for vertebrate hosts, including humans. Twenty-one anti-H1 antihistamines were screened against first-stage larvae (L1) of A. cantonensis obtained from the feces of infected rats. Standard anthelmintic drugs ivermectin and albendazole were employed for comparative analysis. The findings revealed four active compounds (promethazine, cinnarizine, desloratadine, and rupatadine), with promethazine demonstrating the highest potency (EC50 = 31.6 µM). Additionally, morphological analysis showed that antihistamines induced significant changes in larvae. To understand the mechanism of action, antimuscarinic activities were reported based on average pK i values for human muscarinic receptor (mAChR) subtypes of the evaluated compounds. Furthermore, an analysis of the physicochemical and pharmacodynamic properties of antihistamines revealed that their anthelmintic activity does not correlate with their activity at H1 receptors. This study marks the first documentation of antihistamines' activity against A. cantonensis, offering a valuable contribution to the quest for novel agents effective against zoonotic helminths.

3.
Future Med Chem ; 16(17): 1791-1799, 2024.
Article in English | MEDLINE | ID: mdl-39072451

ABSTRACT

Aim: To identify potential antischistosomal agents through 3D pharmacophore-based virtual screening of US FDA approved drugs.Materials & methods: A comprehensive virtual screening was conducted on a dataset of 10,000 FDA approved drugs, employing praziquantel as a template. Promising candidates were selected and assessed for their impact on Schistosoma mansoni viability in vitro and in vivo using S. mansoni infected mice.Results & conclusion: Among the selected drugs, betamethasone and doxazosin demonstrated in vitro efficacy, with effective concentration 50% (EC50) values ranging from 35 to 60 µM. In vivo studies revealed significant (>50%) reductions in worm burden for both drugs. These findings suggest that betamethasone and doxazosin hold promise for repurposing in treating schistosomiasis. Additionally, the study showcases a useful approach for identifying new antischistosomal drugs.


Discovering new treatments for #schistosomiasis is crucial [Formula: see text]. Our study used virtual screening to identify potential antischistosomal drugs from US FDA approved compounds [Formula: see text]. Promising results in vitro and in vivo. [Formula: see text] #drugdiscovery #tropicaldiseases.


Subject(s)
Schistosoma mansoni , United States Food and Drug Administration , Animals , Mice , Schistosoma mansoni/drug effects , United States , Drug Approval , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/therapeutic use , Schistosomiasis mansoni/drug therapy , Models, Molecular , Humans , Pharmacophore
4.
ACS Omega ; 9(23): 25356-25369, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882094

ABSTRACT

Schistosomiasis is a neglected disease of poverty that affects over 200 million people worldwide and relies on a single drug for therapy. The cathepsin B1 cysteine protease (SmCB1) of Schistosoma mansoni has been investigated as a potential target. Here, a structure-based pharmacophore virtual screening (VS) approach was used on a data set of approved drugs to identify potential antischistosomal agents targeting SmCB1. Pharmacophore (PHP) models underwent validation through receiver operating characteristics curves achieving values >0.8. The data highlighted riboflavin (RBF) as a compound of particular interest. A 1 µs molecular dynamics simulation demonstrated that RBF altered the conformation of SmCB1, causing the protease's binding site to close around RBF while maintaining the protease's overall integrity. RBF inhibited the activity of SmCB1 at low micromolar values and killed the parasite in vitro. Finally, in a murine model of S. mansoni infection, oral administration of 100 mg/kg RBF for 7 days significantly decreased worm burdens by ∼20% and had a major impact on intestinal and fecal egg burdens, which were decreased by ∼80%.

5.
Antimicrob Agents Chemother ; 68(7): e0011424, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38780260

ABSTRACT

Schistosomiasis, a widespread parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, primarily in developing countries. Praziquantel, the sole drug currently approved for schistosomiasis treatment, demonstrates effectiveness against patent infections. A recent study highlighted the antiparasitic properties of amiodarone, an anti-arrhythmic drug, exhibiting higher efficacy than praziquantel against prepatent infections. This study assessed the efficacy of amiodarone and praziquantel, both individually and in combination, against Schistosoma mansoni through comprehensive in vitro and in vivo experiments. In vitro experiments demonstrated synergistic activity (fractional inhibitory concentration index ≤0.5) for combinations of amiodarone with praziquantel. In a murine model of schistosomiasis featuring prepatent infections, treatments involving amiodarone (200 or 400 mg/kg) followed by praziquantel (200 or 400 mg/kg) yielded a substantial reduction in worm burden (60%-70%). Given the low efficacy of praziquantel in prepatent infections, combinations of amiodarone with praziquantel may offer clinical utility in the treatment of schistosomiasis.


Subject(s)
Amiodarone , Praziquantel , Schistosoma mansoni , Schistosomiasis mansoni , Amiodarone/pharmacology , Amiodarone/therapeutic use , Animals , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni/drug effects , Mice , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Female , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Drug Synergism , Drug Therapy, Combination , Male , Disease Models, Animal
6.
Chem Biodivers ; 21(3): e202301929, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278761

ABSTRACT

Schistosomiasis is a major neglected disease that imposes a substantial worldwide health burden, affecting approximately 250 million people globally. As praziquantel is the only available drug to treat schistosomiasis, there is a critical need to identify new anthelmintic compounds, particularly from natural sources. To enhance the activity of different natural products, one potential avenue involves its combination with silver nanoparticles (AgNP). Based on this approach, a one-step green method for the in situ preparation of dehydrodieugenol (DHDG) by oxidation coupling reaction using silver and natural eugenol is presented. AgNP formation was confirmed by UV-Vis spectroscopy due to the appearance of the surface plasmon resonance (SPR) band at 430 nm which is characteristic of silver nanoparticles. The nanoparticles were spherical with sizes in the range of 40 to 50 nm. Bioassays demonstrated that the silver nanoparticles loaded with DHDG exhibited significant anthelmintic activity against Schistosoma mansoni adult worms without toxicity to mammalian cells and an in vivo animal model (Caenorhabditis elegans), contributing to the development of new prototypes based on natural products for the treatment of schistosomiasis.


Subject(s)
Anthelmintics , Anti-Infective Agents , Biological Products , Eugenol/analogs & derivatives , Lignans , Metal Nanoparticles , Schistosomiasis , Animals , Humans , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Schistosomiasis/drug therapy , Anti-Infective Agents/therapeutic use , Schistosoma mansoni , Biological Products/therapeutic use , Mammals
7.
ACS Omega ; 8(43): 40890-40897, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929107

ABSTRACT

Schistosomiasis, a parasitic disease affecting nearly 250 million individuals globally, poses a significant health challenge. With praziquantel being the sole available treatment and its limited efficacy in early stage infections, the identification of novel bioactive compounds becomes imperative. This study examines the potential of dehydrodieugenol B (1) and its methyl ether (2), derived from the leaves of the Brazilian Nectandra leucantha plant (Lauraceae), in combatting Schistosoma mansoni infections through a preclinical approach. Initially, compound 1 displayed noteworthy in vitro antiparasitic activity with an EC50 of 31.9 µM, showcasing low toxicity in mammalian cells and an in vivo animal model (Caenorhabditis elegans). Conversely, compound 2 exhibited no activity. In silico predictions pointed to favorable oral bioavailability and the absence of PAINS similarities. Subsequently, a single oral dose of 400 mg/kg of compound 1 or praziquantel was administered to mice infected with adult (patent infection) or immature parasites (prepatent infection). Remarkably, in prepatent infections, 1 resulted in a significant reduction (approximately 50%) in both worm and egg burden, while praziquantel reduced worm and egg numbers by 30%. The superior efficacy of dehydrodieugenol B (1) compared to praziquantel in premature infections holds the potential to advance the development of new molecular prototypes for schistosomiasis treatment.

8.
Future Med Chem ; 15(22): 2033-2050, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37937522

ABSTRACT

Background: The impact of schistosomiasis, which affects over 230 million people, emphasizes the urgency of developing new antischistosomal drugs. Artificial intelligence is vital in accelerating the drug discovery process. Methodology & results: We developed classification and regression machine learning models to predict the schistosomicidal activity of compounds not experimentally tested. The prioritized compounds were tested on schistosomula and adult stages of Schistosoma mansoni. Four compounds demonstrated significant activity against schistosomula, with 50% effective concentration values ranging from 9.8 to 32.5 µM, while exhibiting no toxicity in animal and human cell lines. Conclusion: These findings represent a significant step forward in the discovery of antischistosomal drugs. Further optimization of these active compounds can pave the way for their progression into preclinical studies.


Subject(s)
Schistosomiasis , Schistosomicides , Animals , Humans , Schistosoma mansoni , Artificial Intelligence , Schistosomicides/pharmacology , Schistosomiasis/drug therapy , Drug Discovery
9.
Sci Rep ; 13(1): 19735, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957227

ABSTRACT

The chemical classes of semicarbazones, thiosemicarbazones, and hydrazones are present in various compounds, each demonstrating diverse biological activities. Extensive studies have revealed their potential as schistosomicidal agents. Thiosemicarbazones, in particular, have shown inhibitory effects on Schistosoma mansoni's cathepsin B1 enzyme (SmCB1), which plays a crucial role in hemoglobin degradation within the worm's gut and its nutrition processes. Consequently, SmCB1 has emerged as a promising target for novel schistosomiasis therapies. Moreover, chloroquinoline exhibits characteristics in its aromatic structure that hold promise for developing SmCB1 inhibitors, along with its interaction with hemoglobin's heme group, potentially synergizing against the parasite's gut. In this context, we report the synthesis of 22 hybrid analogs combining hydrazones and quinolines, evaluated against S. mansoni. Five of these hybrids demonstrated schistosomicidal activity in vitro, with GPQF-8Q10 being the most effective, causing worm mortality within 24 h at a concentration of 25 µM. GPQF-8Q8 proved to be the most promising in vivo, significantly reducing egg presence in feces (by 52.8%) and immature eggs in intestines (by 45.8%). These compounds exhibited low cytotoxicity in Vero cells and an in in vivo animal model (Caenorhabditis elegans), indicating a favorable selectivity index. This suggests their potential for the development of new schistosomiasis therapies. Further studies are needed to uncover specific target mechanisms, but these findings offer a promising starting point.


Subject(s)
Schistosomiasis mansoni , Schistosomiasis , Schistosomicides , Thiosemicarbazones , Animals , Chlorocebus aethiops , Schistosoma mansoni , Vero Cells , Schistosomicides/pharmacology , Thiosemicarbazones/pharmacology , Hydrazones/pharmacology , Hemoglobins/pharmacology , Schistosomiasis mansoni/drug therapy
10.
Microbiol Spectr ; 11(4): e0139323, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409934

ABSTRACT

Schistosomiasis is a parasitic disease that afflicts approximately 250 million people worldwide. There is an urgent demand for new antiparasitic agents because praziquantel, the only drug available for the treatment of schistosomiasis, is not universally effective and may derail current progress toward the WHO goal of eliminating this disease as a public health problem by 2030. Nifuroxazide (NFZ), an oral nitrofuran antibiotic, has recently been explored to be repurposed for parasitic diseases. Here, in vitro, in vivo, and in silico studies were conducted to evaluate the activity of NFZ on Schistosoma mansoni. The in vitro study showed significant antiparasitic activity, with 50% effective concentration (EC50) and 90% effective concentration (EC90) values of 8.2 to 10.8 and 13.7 to 19.3 µM, respectively. NFZ also affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg of body weight) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden (~40%). In patent infection, NFZ achieved a high reduction in the number of eggs (~80%), but the drug caused a low reduction in the egg burden of animals with prepatent infection. Finally, results from in silico target fishing methods predicted that serine/threonine kinases could be one of the potential targets for NFZ in S. mansoni. Overall, the present study revealed that NFZ possesses antischistosomal properties, mainly in terms of egg burden reduction in animals with patent S. mansoni infection. IMPORTANCE The increasing recognition of the burden imposed by helminthiasis, associated with the limited therapeutic arsenal, has led to initiatives and strategies to research and develop new drugs for the treatment of schistosomiasis. One of these strategies is drug repurposing, which considers low-risk compounds with potentially reduced costs and shorter time for development. In this study, nifuroxazide (NFZ) was evaluated for its anti-Schistosoma mansoni potential through in vitro, in vivo, and in silico studies. In vitro, NFZ affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden and egg production. In silico investigations have identified serine/threonine kinases as a molecular target for NFZ. Collectively, these results implied that NFZ might be a potential therapeutic candidate for the treatment of schistosomiasis.


Subject(s)
Nitrofurans , Schistosomiasis mansoni , Schistosomiasis , Schistosomicides , Animals , Mice , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Schistosoma mansoni , Nitrofurans/pharmacology , Nitrofurans/therapeutic use , Threonine/pharmacology , Threonine/therapeutic use , Serine
11.
Nanomedicine (Lond) ; 18(4): 331-342, 2023 02.
Article in English | MEDLINE | ID: mdl-37140262

ABSTRACT

Aim: To formulate a carvacryl acetate nanoemulsion (CANE) and test its antischistosomal activity. Materials & methods: CANE was prepared and tested in vitro on Schistosoma mansoni adult worms and both human and animal cell lines. Next, CANE was administered orally to mice infected with either a prepatent infection or a patent infection of S. mansoni. Results: CANE was stable during 90 days of analysis. CANE showed in vitro anthelmintic activity, and no cytotoxic effects were observed. In vivo, CANE was more effective than the free compounds in reducing worm burden and egg production. Treatment with CANE was more effective for prepatent infections than praziquantel. Conclusion: CANE improves antiparasitic properties and may be a promising delivery system for schistosomiasis treatment.


Subject(s)
Praziquantel , Schistosoma mansoni , Mice , Humans , Animals , Monoterpenes , Antiparasitic Agents
13.
Curr Top Med Chem ; 23(9): 816-832, 2023.
Article in English | MEDLINE | ID: mdl-37102485

ABSTRACT

Nitroaromatic compounds have been used for treating parasitic diseases since the 1960s. Pharmacological alternatives to treat them are under observation. However, for the most neglected diseases, such as those caused by worms and less known protozoans, nitro compounds are still among the drugs of choice, despite their well-known collateral effects. In this review, we describe the chemistry and the uses of the still most employed nitroaromatic compounds for treating parasitosis caused by worms or lesser-known protozoans. We also describe their application as veterinary drugs. The most accepted mechanism of action seems to be the same, leading to collateral effects. For this reason, a special session was dedicated to discussing toxicity, carcinogenicity, and mutagenesis, as well as the most acceptable aspects of the known structure-activity/toxicity relationships involving nitroaromatic compounds. It employed the SciFindern search tool from the American Chemical Society in the search for the most relevant bibliography within the field, exploring keyword expressions such as "NITRO COMPOUNDS" and "BIOLOGICAL ACTIVITY" (within Abstracts or Keywords) and concepts related to parasites, pharmacology and toxicology. The results were classified according to the chemical classes of nitro compounds, being the most relevant studies regarding journal impact and interest of the described results chosen to be discussed. From the found literature, it is easy to notice that nitro compounds, especially the nitroaromatic ones, are still widely used in antiparasitic therapy, despite their toxicity. They also are the best starting point in the search for new active compounds.


Subject(s)
Parasitic Diseases , Humans , Neglected Diseases , Nitro Compounds/chemistry , Parasitic Diseases/drug therapy , Structure-Activity Relationship
16.
Article in English | MEDLINE | ID: mdl-36161523

ABSTRACT

Neglected tropical diseases (NTDs) remain major public health problems in developing countries. Reducing the burden of NTDs requires sustained collaborative drug discovery efforts to achieve the goals of the new NTDs roadmap launched by the World Health Organization. Oral drugs are the most convenient choice and usually the safest and least expensive. However, the oral use of some drugs for NTDs treatment has many drawbacks, including toxicity, adverse reactions, drug resistance, drug low solubility, and bioavailability. Since there is an imperative need for novel and more effective drugs to treat the various NTDs, in recent years, several compound-loaded nanoparticles have been prepared with the objective of evaluating their application as an oral drug delivery system for the treatment of NTDs. This review focuses on the various types of nanoparticle drug delivery systems that have been recently used against the major NTDs caused by parasites such as leishmaniasis, Chagas disease, and schistosomiasis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Subject(s)
Leishmaniasis , Tropical Medicine , Humans , Drug Discovery , Leishmaniasis/drug therapy , Neglected Diseases/drug therapy , Drug Resistance
17.
Sci Rep ; 12(1): 19320, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369516

ABSTRACT

Schistosomiasis, a parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, especially in developing countries. Despite the significant economic and public health consequences, only one drug is currently available for treatment of schistosomiasis, praziquantel. Thus, there is an urgent demand for new anthelmintic agents. Based on our continuous studies involving the chemical prospection of floristic biodiversity aiming to discover new bioactive compounds, this work reports the in vitro antiparasitic activity against Schistosoma mansoni adult worms of neolignans threo-austrobailignan-6 and verrucosin, both isolated from Saururus cernuus L. (Saururaceae). These neolignans showed a significant in vitro schistosomicidal activity, with EC50 values of 12.6-28.1 µM. Further analysis revealed a pronounced reduction in the number of S. mansoni eggs. Scanning electron microscopy analysis revealed morphological alterations when schistosomes were exposed to either threo-austrobailignan-6 or verrucosin. These relevant antischistosomal properties were accompanied by low cytotoxicity potential against the animal (Vero) and human (HaCaT) cell lines, resulting in a high selectivity index. Considering the promising chemical and biological properties of threo-austrobailignan-6 and verrucosin, this research should be of interest to those in the area of neglected diseases and in particular antischistosomal drug discovery.


Subject(s)
Lignans , Saururaceae , Schistosomiasis mansoni , Schistosomiasis , Animals , Humans , Schistosoma mansoni , Saururaceae/chemistry , Schistosomiasis mansoni/drug therapy
19.
Front Pharmacol ; 13: 917363, 2022.
Article in English | MEDLINE | ID: mdl-35784725

ABSTRACT

Since praziquantel is the only drug available to treat schistosomiasis, a neglected parasitic disease that affects more than 240 million people worldwide, there is an urgent demand for new antischistosomal agents. Natural compound-loaded nanoparticles have recently emerged as a promising alternative for the treatment of schistosomiasis. Carvacrol is an antimicrobial monoterpene present in the essential oil extracted from several plants, especially oregano (Origanum vulgare). In this study, a carvacrol nanoemulsion (CVNE) was prepared, characterized, and administered orally (200 mg/kg) in a mouse infected with either immature (prepatent infection) or adult (patent infection) Schistosoma mansoni. For comparison, data obtained with an unloaded nanoemulsion (blank formulation), free carvacrol, and the drug of reference praziquantel are also presented. CVNE was more effective than free carvacrol in reducing the worm burden and egg production in both patent and prepatent infections. Favorably, CVNE had a high effect in terms of reducing the number of worms and eggs (85%-90%) compared with praziquantel (∼30%) in prepatent infection. In tandem, carvacrol-loaded nanoemulsion markedly improved antischistosomal activity, showing efficiency in reducing worm and egg burden, and thus it may be a promising delivery system for the treatment of schistosomiasis.

20.
Front Pharmacol ; 13: 901459, 2022.
Article in English | MEDLINE | ID: mdl-35800438

ABSTRACT

Human helminthiasis affects approximately one in five people in the world and disproportionally affects the poorest and most deprived communities. Human angiostrongyliasis, caused by nematode Angiostrongylus cantonensis, is a neglected emerging disease with escalating importance worldwide. Chemotherapy is the main control method for helminthiasis, but the therapeutic arsenal is limited. This study aimed to evaluate the antiparasitic and molecular properties of the major available anthelmintic drugs against A. cantonensis in vitro. The first-stage larvae (L1), isolated from feces of an A. cantonensis-infected rat, were exposed to a set of 12 anthelmintic drugs in vitro. The larvae were monitored, and the concentration- and time-dependent viability alterations were determined. From 12 anthelmintic drugs, six (ivermectin, salamectin, moxidectin, pyrantel pamoate, albendazole and levamisole) were identified to affect the viability of A. cantonensis. The macrocyclic lactones (ivermectin, salamectin, moxidectin) and the imidazothiazole levamisole, were the most effective drugs, with IC50 ranging from 2.2 to 2.9 µM and a rapid onset of action. Albendazole, the most widely used anthelmintic in humans, had a slower onset of action, but an IC50 of 11.3 µM was achieved within 24 h. Molecular properties studies suggest that a less lipophilic character and low molecular weight could be favorable for the biological activity of the non-macrocyclic molecules. Collectively, our study revealed that macrocyclic lactones, levamisole, pyrantel pamoate, and albendazole are important anthelmintic agents against A. cantonensis. The results of this in vitro study also suggest that A. cantonensis L1 may be a particularly sensitive and useful model for anthelmintic studies.

SELECTION OF CITATIONS
SEARCH DETAIL