Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 166: 127-137, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33098905

ABSTRACT

In this study, starches from underground stems of Trimezia juncifolia were evaluated during dry season (DSS), wet season (WSS) and sprouting (SS). Results evidenced that drought stress did not interfere with the yield, amylose content and degree of polymerization (DP) of amylopectin. However, the extraction yield in SS was 58% lower, being observed and increase of 7.5% in the content of amylose, and 13.5% in DP values for SS amylopectin, with a predominance of A-chains. The amount of total sugar, the starch granules size as well as solubility and swelling properties varied as function of the phenological status. Also, starch granules changed from A-type polymorph in DSS and SS to a CA-type in WSS. Nevertheless, it was observed a crystallinity reduction from 56% in DSS to 37.1% in SS. In addition, thermograms evidenced the presence of amylose-lipid complexes, with endothermic transition temperatures being affected by drought stress and sprouting. Finally, results demonstrate that underground stems from T. juncifolia have adaptative strategies involving changes in the morphological and physicochemical properties of the starch granules.


Subject(s)
Amylopectin/chemistry , Droughts , Iridaceae/chemistry , Plant Stems/chemistry , Amylopectin/analysis , Iridaceae/metabolism , Polymerization , Stress, Physiological , Transition Temperature , Wettability
2.
Carbohydr Polym ; 212: 304-311, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30832862

ABSTRACT

In this study corms from Trimezia juncifolia were collected in the wet (WSS) and dry (DSS) seasons and used for extraction of starch. Results evidenced that drought stress interfered with the yield, morphological and physicochemical properties of the starches. In addition, it was observed a higher content of amylose for DSS (44%) when compared with WSS (41%). Drought stress did not interfere with the degree of polymerization (DP) of amylopectin, whereas decreased the amylose DP for DSS. Also, starch granules changed from A-type polymorph in the DSS to a CC-type in WSS. Drought stress reduced the starch crystallinity from 27% in WSS to 25.9% in DSS. In addition, the endothermic transition temperatures and enthalpy change of transition were also affected by drought stress. Finally, results clearly demonstrate that changes in the morphological and physicochemical properties of the starch granules figure as adaptive strategies of T. junciolia to drought stress.

3.
An Acad Bras Cienc ; 87(2): 797-812, 2015.
Article in English | MEDLINE | ID: mdl-26062118

ABSTRACT

Among the compounds stored by plants, several functions are assigned to fructans, such as source of energy and protection against drought and extreme temperatures. In the present study we analyzed the anatomy and distribution of fructans in vegetative organs of Dimerostemma vestitum (Asteraceae), an endemic species from the Brazilian campos rupestres. D. vestitumhas amphistomatic and pubescent leaves, with both glandular and non-glandular trichomes. In the basal aerial stem the medulla has two types of parenchyma, which differ from the apical portion. The xylopodium has mixed anatomical origin. Interestingly, although inulin-type fructans with high degree of polymerization were found in all analyzed organs except the leaves, the highest amount and maximum degree of polymerization were detected in the xylopodium. Inulin sphero-crystals were visualized under polarized light in the medulla and in the vascular tissues mainly in the central region of the xylopodium, which has abundant xylem parenchyma. Secretory structures accumulating several compounds but not inulin were identified within all the vegetative organs. The presence of these compounds, in addition to inulin, might be related to the strategies of plants to survive adverse conditions in a semi-arid region, affected seasonally by water restriction and frequently by fire.


Subject(s)
Asteraceae/anatomy & histology , Asteraceae/metabolism , Fructans/metabolism , Adaptation, Physiological , Asteraceae/classification , Brazil , Fructans/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...