Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Clinics (Sao Paulo) ; 73: e246, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30088535

ABSTRACT

OBJECTIVES: The present study aimed to investigate cardiovascular autonomic modulation and angiotensin II (Ang II) activity in diabetic mice that were genetically engineered to harbor two or three copies of the angiotensin-converting enzyme gene. METHODS: Diabetic and non-diabetic mice harboring 2 or 3 copies of the angiotensin-converting enzyme gene were used in the present study. Animals were divided into 4 groups: diabetic groups with two and three copies of the angiotensin-converting enzyme gene (2CD and 3CD) and the respective age-matched non-diabetic groups (2C and 3C). Hemodynamic, cardiovascular, and autonomic parameters as well as renal Ang II expression were evaluated. RESULTS: Heart rate was lower in diabetic animals than in non-diabetic animals. Autonomic modulation analysis indicated that the 3CD group showed increased sympathetic modulation and decreased vagal modulation of heart rate variability, eliciting increased cardiac sympathovagal balance, compared with all the other groups. Concurrent diabetes and either angiotensin-converting enzyme polymorphism resulted in a significant increase in Ang II expression in the renal cortex. CONCLUSION: Data indicates that a small increase in angiotensin-converting enzyme activity in diabetic animals leads to greater impairment of autonomic function, as demonstrated by increased sympathetic modulation and reduced cardiac vagal modulation along with increased renal expression of Ang II.


Subject(s)
Angiotensin II/analysis , Autonomic Nervous System/physiopathology , Cardiovascular System/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Gene Dosage/physiology , Kidney/enzymology , Peptidyl-Dipeptidase A/genetics , Angiotensin II/metabolism , Animals , Blood Glucose/analysis , Heart Rate/physiology , Immunohistochemistry , Male , Mice , Polymerase Chain Reaction , Random Allocation , Vagus Nerve/physiopathology
2.
Clinics ; 73: e246, 2018. tab, graf
Article in English | LILACS | ID: biblio-952795

ABSTRACT

OBJECTIVES: The present study aimed to investigate cardiovascular autonomic modulation and angiotensin II (Ang II) activity in diabetic mice that were genetically engineered to harbor two or three copies of the angiotensin-converting enzyme gene. METHODS: Diabetic and non-diabetic mice harboring 2 or 3 copies of the angiotensin-converting enzyme gene were used in the present study. Animals were divided into 4 groups: diabetic groups with two and three copies of the angiotensin-converting enzyme gene (2CD and 3CD) and the respective age-matched non-diabetic groups (2C and 3C). Hemodynamic, cardiovascular, and autonomic parameters as well as renal Ang II expression were evaluated. RESULTS: Heart rate was lower in diabetic animals than in non-diabetic animals. Autonomic modulation analysis indicated that the 3CD group showed increased sympathetic modulation and decreased vagal modulation of heart rate variability, eliciting increased cardiac sympathovagal balance, compared with all the other groups. Concurrent diabetes and either angiotensin-converting enzyme polymorphism resulted in a significant increase in Ang II expression in the renal cortex. CONCLUSION: Data indicates that a small increase in angiotensin-converting enzyme activity in diabetic animals leads to greater impairment of autonomic function, as demonstrated by increased sympathetic modulation and reduced cardiac vagal modulation along with increased renal expression of Ang II.


Subject(s)
Animals , Male , Mice , Autonomic Nervous System/physiopathology , Angiotensin II/analysis , Cardiovascular System/physiopathology , Peptidyl-Dipeptidase A/genetics , Gene Dosage/physiology , Diabetes Mellitus, Experimental/physiopathology , Kidney/enzymology , Vagus Nerve/physiopathology , Blood Glucose/analysis , Angiotensin II/metabolism , Immunohistochemistry , Random Allocation , Polymerase Chain Reaction , Heart Rate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...