Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32903678

ABSTRACT

Computed tomography (CT) and X-ray images have been extensively used as a valuable diagnostic tool in dentistry for surgical planning and treatment. Nowadays, dental cone beam CT has been extensively used in dental clinics. Therefore, it is possible to employ three-dimensional (3D) data from the CT to reconstruct a two-dimensional (2D) panoramic dental image that provides a longitudinal view of the mandibular region of the patient, avoiding an additional exposure to X-ray. In this work, we developed a new automatic method for reconstructing 2D panoramic images of the dental arch based on 3D CT images, using Bézier curves and optimization techniques. The proposed method was applied to five patients, some of them with missing teeth, and smooth panoramic images with good contrast were obtained.

2.
Lasers Med Sci ; 35(3): 567-572, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31396793

ABSTRACT

To evaluate whether acute photobiomodulation can elicit a hypotensive effect in spontaneously hypertensive rats (SHR). Male SHR were submitted to the implantation of a polyethylene cannula into the femoral artery. After 24 h, baseline measurements of the hemodynamic parameters: systolic, diastolic, and mean arterial pressure, and heart rate were accomplished for 1 h. Afterwards, laser application was simulated, and the hemodynamic parameters were recorded for 1 h. In the same animal, the laser was applied at six different positions of the rat's abdomen, and the hemodynamic parameters were also recorded until the end of the hypotensive effect. The irradiation parameters were red wavelength (660 nm); average optical power of 100 mW; 56 s per point (six points); spot area of 0.0586 cm2; and irradiance of 1.71 W/cm2 yielding to a fluency of 96 J/cm2 per point. For measuring plasma NO levels, blood was collected before the recording, as well as immediately after the end of the mediated hypotensive effect. Photobiomodulation therapy was able to reduce the systolic arterial pressure in 69% of the SHR submitted to the application, displaying a decrease in systolic, diastolic, and mean arterial pressure. No change in heart rate was observed. Nevertheless, there was an increase in serum nitric oxide levels in the SHR responsive to photobiomodulation. Our results suggest that acute irradiation with a red laser at 660 nm can elicit a hypotensive effect in SHR, probably by a mechanism involving the release of NO, without changing the heart rate.


Subject(s)
Hypertension/radiotherapy , Low-Level Light Therapy , Animals , Blood Pressure/radiation effects , Heart Rate/radiation effects , Hemodynamics/radiation effects , Hypertension/blood , Hypertension/physiopathology , Male , Nitric Oxide/blood , Rats , Rats, Inbred SHR
3.
J Neurosci Methods ; 309: 109-120, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30149047

ABSTRACT

BACKGROUND: Neuronavigation provides visual guidance of an instrument during procedures of neurological interventions, and has been shown to be a valuable tool for accurately positioning transcranial magnetic stimulation (TMS) coils relative to an individual's anatomy. Despite the importance of neuronavigation, its high cost, low portability, and low availability of magnetic resonance imaging facilities limit its insertion in research and clinical environments. NEW METHOD: We have developed and validated the InVesalius Navigator as the first free, open-source software for image-guided navigated TMS, compatible with multiple tracking devices. A point-based, co-registration algorithm and a guiding interface were designed for tracking any instrument (e.g. TMS coils) relative to an individual's anatomy. RESULTS: Localization, precision errors, and repeatability were measured for two tracking devices during navigation in a phantom and in a simulated TMS study. Errors were measured in two commercial navigated TMS systems for comparison. Localization error was about 1.5 mm, and repeatability was about 1 mm for translation and 1° for rotation angles, both within limits established in the literature. COMPARISON WITH EXISTING METHODS: Existing TMS neuronavigation software programs are not compatible with multiple tracking devices, and do not provide an easy to implement platform for custom tools. Moreover, commercial alternatives are expensive with limited portability. CONCLUSIONS: InVesalius Navigator might contribute to improving spatial accuracy and the reliability of techniques for brain interventions by means of an intuitive graphical interface. Furthermore, the software can be easily integrated into existing neuroimaging tools, and customized for novel applications such as multi-locus and/or controllable-pulse TMS.


Subject(s)
Neuronavigation/methods , Software , Transcranial Magnetic Stimulation/methods , Algorithms , Humans , Motor Cortex/physiology , Phantoms, Imaging , Reproducibility of Results , Transcranial Magnetic Stimulation/instrumentation
4.
J Cardiovasc Pharmacol ; 65(2): 168-75, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25384194

ABSTRACT

Nitric oxide (NO) can be found in different species and is a potent vasodilator. The ruthenium compound cis-[Ru(NO)(NO2)(bpy)2].(PF6)2 (BPY) can generate NO. This study aimed to investigate the BPY stability at physiological pH, the cellular mechanisms involved in BPY effect, NO species originating from BPY, and to verify how BPY affects blood pressure. Our results has shown that at pH 7.4 and 9.4, the NO coordinated to ruthenium (Ru-NO) is converted to nitrite (Ru-NO2) and remains stable. In aortic rings, the stable configuration of BPY (Ru-NO2) induces vascular relaxation in a concentration-dependent manner. Thus, further experiments were made with stable configuration of BPY (Ru-NO2). The relaxation induced by BPY was abolished in the presence of guanylyl cyclase inhibitor and decreased in the presence of potassium channel blocker. By using radicalar (NO) and nitroxyl (NO) scavenger, our results suggest that the BPY mainly release the radicalar species. By using fluorescence probes to detect intracellular NO concentration ([NO]i) and cytosolic Ca concentration ([Ca]c), we verified that in smooth muscle cells, BPY induces an increase in [NO]i and a decrease in [Ca]c. The intravenous bolus injection of 1.25, 2.5, and 5.0 mg/kg from stable configuration of BPY results in a decrease on basal blood pressure values. Taken together, our results indicated that the stable configuration of the compound BPY induces vascular relaxation in aorta because of NO release and decrease of [Ca]c in vascular smooth muscle cells. Also, the stable configuration is able to reduce the blood pressure in a dose-dependent manner.


Subject(s)
Blood Pressure/drug effects , Muscle, Smooth, Vascular , Nitric Oxide/metabolism , Ruthenium Compounds/pharmacology , Vasodilation , Animals , Aorta , Dose-Response Relationship, Drug , Guanylate Cyclase/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Rats , Rats, Wistar , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...