Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Nat Prod Res ; 36(5): 1370-1374, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33459053

ABSTRACT

Alkaloid profiles from Amaryllis belladonna plants collected in Chile were examined by GC-MS to assess their inhibitory activity on acetylcholinesterase (AChE) using in vitro and in silico methodologies. The alkaloid extract was roughly separated by column chromatography on silica gel. AChE inhibitory activities from extracts and purified alkaloids were tested by the Ellman method and a molecular docking study was performed to assess the interaction between AChE and purified alkaloids. Sixteen alkaloids were found from hexane and chloroform extracts, and three were isolated and identified as buphanidrine, acetylcaranine and lycorine. Chloroform extract showed the greatest AChE inhibitory activity with IC50 value 8.89 µg/mL, whereas buphanidrine exhibited the highest inhibitory activity, with IC50 value 17.56 µg/mL. Inhibition kinetics showed that buphanidrine acts as a mixed inhibitor and molecular docking supports this inhibition mechanism. Overall, our study supports the potential use of A. belladonna as an alkaloid source with AChE inhibitory activity.[Formula: see text].


Subject(s)
Acetylcholinesterase , Atropa belladonna , Acetylcholinesterase/chemistry , Chile , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry
2.
J Colloid Interface Sci ; 606(Pt 1): 57-66, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34388573

ABSTRACT

HYPOTHESIS: Weakly bound, physisorbed hydrocarbons could in principle provide a similar water-repellency as obtained by chemisorption of strongly bound hydrophobic molecules at surfaces. EXPERIMENTS: Here we present experiments and computer simulations on the wetting behaviour of water on molecularly thin, self-assembled alkane carpets of dotriacontane (n-C32H66 or C32) physisorbed on the hydrophilic native oxide layer of silicon surfaces during dip-coating from a binary alkane solution. By changing the dip-coating velocity we control the initial C32 surface coverage and achieve distinct film morphologies, encompassing homogeneous coatings with self-organised nanopatterns that range from dendritic nano-islands to stripes. FINDINGS: These patterns exhibit a good water wettability even though the carpets are initially prepared with a high coverage of hydrophobic alkane molecules. Using in-liquid atomic force microscopy, along with molecular dynamics simulations, we trace this to a rearrangement of the alkane layers upon contact with water. This restructuring is correlated to the morphology of the C32 coatings, i.e. their fractal dimension. Water molecules displace to a large extent the first adsorbed alkane monolayer and thereby reduce the hydrophobic C32 surface coverage. Thus, our experiments evidence that water molecules can very effectively hydrophilize initially hydrophobic surfaces that consist of weakly bound hydrocarbon carpets.


Subject(s)
Silicon , Water , Hydrophobic and Hydrophilic Interactions , Surface Properties , Wettability
3.
Int J Mol Sci ; 21(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957654

ABSTRACT

Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.


Subject(s)
Lipid Bilayers/chemistry , Membranes, Artificial , Microscopy, Atomic Force/methods , Silicon/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Phase Transition , Phospholipids/chemistry , Temperature , Vacuum , Volatilization
4.
Rev. bras. farmacogn ; 29(4): 495-499, July-Aug. 2019. tab, graf
Article in English | LILACS | ID: biblio-1042280

ABSTRACT

Abstract Galanthamine is an Amaryllidaceae-derived acetylcholinesterase inhibitor used to treat memory impairment in Alzheimer's disease and vascular dementia. There is evidence that galanthamine, in addition to its effects on acetylcholinesterase, may enhance or inhibit brain nicotinic acetylcholine receptors, which could increase or decrease the therapeutic efficacy of galanthamine, respectively. Here, we evaluated the effects of galanthamine and two others Amaryllidaceae acetylcholinesterase inhibitors (haemanthamine and tazettine) analyzed by gas chromatography-mass spectrometry and identified by comparing their mass fragmentation patterns with literature and database NIST vs.2.0 on the agonist responses of brain nicotinic acetylcholine receptors α7, α3β4, (α4)2(β2)3 and (α4)3(β2)2. Using nicotinic acetylcholine receptors expressed heterologously in Xenopus oocytes, in conjunction with two-electrode voltage clamping, we found that galanthamine inhibits the function of nicotinic acetylcholine receptors assayed through a mix competitive and non-competitevely. Nicotinic acetylcholine receptor α7 were significantly more sensitive to inhibition (17 ± 0.6 µM) than the heteromeric receptor, α3β4 (90 ± 3.4 µM). Neither haemanthamine nor tazettine were more potent than galanthamine.

5.
Rev. bras. farmacogn ; 28(1): 34-43, Jan.-Feb. 2018. tab, graf
Article in English | LILACS | ID: biblio-898738

ABSTRACT

ABSTRACT Acetylcholinesterase is an important target for control of neurodegenerative diseases causing cholinergic signaling deficit. Traditionally, galanthamine has been used as an Amaryllidaceae-derived acetylcholinesterase inhibitor, although new Amaryllidaceae plants could serve as source for better acetylcholinesterase inhibitors. Therefore, the objective of this study was to characterize the alkaloid composition from bulbs of Rhodolirium andicola (Poepp.) Traub, a native Chilean Amaryllidaceae specie, and assess their inhibitory activity on acetylcholinesterase by in vitro and in silico methodologies. Alkaloidal extracts from R. andicola exhibited an inhibitory activity with IC50 values between 11.25 ± 0.04 and 57.78 ± 1.92 µg/ml that included isolated alkaloid, galanthamine (2.3 ± 0.18 µg/ml), Additionally, 12 alkaloids were detected using gas chromatography-mass spectrometry and identified by comparing their mass fragmentation patterns with literature and database NIST vs.2.0. To better understand the bioactivity of isolated compounds and alkaloidal extracts against acetylcholinesterase, a molecular docking approach was performed. Results suggested that alkaloids such as lycoramine, norpluvine diacetate and 6α-deoxy-tazettine expand the list of potential acetylcholinesterase inhibitors to not only galanthamine. The role of R. andicola as a source for acetylcholinesterase inhibitors is further discussed in this study.

6.
Biomacromolecules ; 17(3): 1142-9, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26811988

ABSTRACT

Chitosan is a useful and versatile biopolymer with several industrial and biological applications. Whereas its physical and physicochemical bulk properties have been explored quite intensively in the past, there is a lack of studies regarding the morphology and growth mechanisms of thin films of this biopolymer. Of particular interest for applications in bionanotechnology are ultrathin films with thicknesses under 500 Å. Here, we present a study of thin chitosan films prepared in a dry process using physical vapor deposition and in situ ellipsometric monitoring. The prepared films were analyzed with atomic force microscopy in order to correlate surface morphology with evaporation parameters. We find that the surface morphology of our final thin films depends on both the optical thickness, i.e., measured with ellipsometry, and the deposition rate. Our work shows that ultrathin biopolymer films can undergo dewetting during film formation, even in the absence of solvents and thermal annealing.


Subject(s)
Chitosan/analogs & derivatives , Nanostructures/chemistry , Wettability , Polymerization , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...