Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biomed Pharmacother ; 167: 115537, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37738799

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease (CLD) worldwide and inflammation is key to its progression/resolution. As we have previously described that rilpivirine (RPV) is hepatoprotective in murine models of CLD, here we determine the molecular mechanisms involved, focusing on its anti-inflammatory and immunomodulating properties. They were evaluated in vitro (human hepatic cell lines of the major hepatic cell types), in vivo (liver samples from a murine nutritional model of NAFLD) and ex vivo (peripheral blood mononuclear cells -PBMC- from patients with CLD). Transcriptomic analysis of liver samples from NAFLD mice showed RPV down-regulated biological processes associated with the inflammatory response (NF-κB/IκB signaling and mitogen-activated protein kinase -MAPK- activity) and leukocyte chemotaxis and migration. We observed a decrease in Adgre1 and Ccr2 expression and in the number of CCR2 + cells in the periportal areas of RPV-treated NAFLD mice. This RPV-induced effect on the CCL2/CCR2 axis was confirmed in vitro. A similar result was also obtained with CXCL10/IP10, one of the main chemokines in the liver. RPV also diminished activation of MAP kinases p38 and JNK. In addition, RPV inhibited the NLRP3 inflammasome pathway in vitro, decreasing NLRP3 protein expression, caspase-1 activation and IL-1ß gene expression. RPV was also proven anti-inflammatory in PBMC from patients with CLD treated ex vivo. In conclusion, beyond its well-described role in antiretroviral therapy, RPV manifests anti-inflammatory and immunoregulatory effects, a finding that could be of great relevance for the search of novel targets or repositioning strategies for CLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Leukocytes, Mononuclear/metabolism , Rilpivirine/metabolism , Rilpivirine/pharmacology , Rilpivirine/therapeutic use , Liver , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism
2.
Cell Death Dis ; 13(4): 385, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35443746

ABSTRACT

As the main extracellular matrix-producing cells, activated hepatic stellate cells (HSC) are fundamental mediators of liver fibrosis (LF), and understanding their activation/inactivation mechanisms is paramount to the search for novel therapeutics. The antiretroviral drug Rilpivirine (RPV) has demonstrated a hepatoprotective effect in several animal models of chronic liver injury that is related to its antifibrogenic and apoptotic action in HSC. In the present study, we evaluated whether autophagy is implicated in the hepatoprotective action of RPV, as autophagy plays an important role in HSC transdifferentiation. We employed two standard mouse models of chronic liver injury - fatty liver disease and carbon tetrachloride (CCl4)-induced hepatotoxicity -and cultured HSC activated with the profibrotic cytokine TGF-ß. RPV enhanced autophagy in the whole liver of both mouse models and in activated HSC, evident in the protein expression of autophagy markers, increased autophagosome content and lysosomal mass. Moreover, increased autophagic flux was observed in RPV-exposed HSC as revealed by tandem fluorescence-tagged LC3 and p62 and analysis of LC3-II accumulation in cells exposed to the lysosomal inhibitor chloroquine. Importantly, autophagy was involved in the cytotoxic effect of RPV on HSC, though in a differential manner. Pharmacological inhibition of autophagy by 3-methyladenine (3-MA) did not affect the diminishing effect of RPV on viability, while treatment with wortmannin or depletion of specific autophagy proteins (ATG5, Beclin-1 and SQSTM1/p62) rescued the detrimental effect of high concentrations of RPV on the viability of activated HSC. Finally, we also provide evidence that RPV compromises the viability of TGF-ß-induced HSC independently of its antifibrogenic effect, observed as reduced collagen 1A1 synthesis, and that this effect does not include RPV´s modulation of autophagy. In summary, as a contributor to the mechanisms involved in the hepatoprotective action of RPV, autophagy may be a good candidate to explore when developing novel therapeutics for LF.


Subject(s)
Hepatic Stellate Cells , Rilpivirine , Animals , Autophagy , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Mice , Rilpivirine/adverse effects , Transforming Growth Factor beta/metabolism
3.
Cells ; 11(3)2022 01 20.
Article in English | MEDLINE | ID: mdl-35159154

ABSTRACT

The activity of sirtuin 1 (SIRT1), a class III histone deacetylase with a critical role in several biological functions, decreases with age and its deficiency is associated with many inflammatory and age-related diseases. It also regulates the chronic immune activation and viral latency during an HIV infection. The life-span and particularly the health span of HIV patients are substantially shortened; however, the participation of SIRT1 in these effects is not clear. We performed a prospective cross-sectional monocentric study that included 70 HIV-infected patients and 43 BMI-, age- and sex-matched uninfected individuals. We found that in the PBMCs of the HIV patients, SIRT1 mRNA levels were significantly lower (p < 0.0001). This decrease, which was corroborated at the protein level, occurred irrespectively of the antiretroviral regimen these patients received and was not significantly related to the general, HIV-related or comorbidity-related parameters. The levels of the major mitochondrial sirtuin SIRT3 were not altered. Moreover, the strong correlations of SIRT1 with the leukocyte markers CD8A and CD19 present in the uninfected individuals were absent in the HIV patients. In conclusion, this study showed that the PBMCs of the HIV patients displayed diminished SIRT1 levels and altered correlations of SIRT1 with markers of CD8+ T cells and B cells, findings which may be relevant for understanding the complex pathogenic milieu in HIV patients.


Subject(s)
HIV Infections , Sirtuins , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cross-Sectional Studies , Down-Regulation , HIV Infections/drug therapy , HIV Infections/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Longevity , Prospective Studies , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuins/genetics , Sirtuins/metabolism
4.
J Pathol ; 254(3): 216-228, 2021 07.
Article in English | MEDLINE | ID: mdl-33834482

ABSTRACT

Liver fibrosis (LF) occurs as a result of persistent liver injury and can be defined as a pathologic, chronic, wound-healing process in which functional parenchyma is progressively replaced by fibrotic tissue. As a phenomenon involved in the majority of chronic liver diseases, and therefore prevalent, it exerts a significant impact on public health. This impact becomes even more patent given the lack of a specific pharmacological therapy, with LF only being ameliorated or prevented through the use of agents that alleviate the underlying causes. Hepatic stellate cells (HSCs) are fundamental mediators of LF, which, activated in response to pro-fibrotic stimuli, transdifferentiate from a quiescent phenotype into myofibroblasts that deposit large amounts of fibrotic tissue and mediate pro-inflammatory effects. In recent years, much effort has been devoted to understanding the mechanisms through which HSCs are activated or inactivated. Using cell culture and/or different animal models, numerous studies have shown that autophagy is enhanced during the fibrogenic process and have provided specific evidence to pinpoint the fundamental role of autophagy in HSC activation. This effect involves - though may not be limited to - the autophagic degradation of lipid droplets. Several hepatoprotective agents have been shown to reverse the autophagic alteration present in LF, but clinical confirmation of these effects is pending. On the other hand, there is evidence that implicates autophagy in several anti-fibrotic mechanisms in HSCs that stimulate HSC cell cycle arrest and cell death or prevent the generation of pro-fibrotic mediators, including excess collagen accumulation. The objective of this review is to offer a comprehensive analysis of published evidence of the role of autophagy in HSC activation and to provide hints for possible therapeutic targets for the treatment and/or prevention of LF related to autophagy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Autophagy/physiology , Hepatic Stellate Cells/pathology , Liver Cirrhosis/pathology , Animals , Humans
5.
Cells ; 10(2)2021 02 16.
Article in English | MEDLINE | ID: mdl-33669403

ABSTRACT

Due to medical advances over the past few decades, human immunodeficiency virus (HIV) infection, once a devastatingly mortal pandemic, has become a manageable chronic condition. However, available antiretroviral treatments (cART) cannot fully restore immune health and, consequently, a number of inflammation-associated and/or immunodeficiency complications have manifested themselves in treated HIV-infected patients. Among these chronic, non-AIDS (acquired immune deficiency syndrome)-related conditions, liver disease is one of the deadliest, proving to be fatal for 15-17% of these individuals. Aside from the presence of liver-related comorbidities, including metabolic disturbances and co-infections, HIV itself and the adverse effects of cART are the main factors that contribute to hepatic cell injury, inflammation, and fibrosis. Among the molecular mechanisms that are activated in the liver during HIV infection, apoptotic cell death of hepatocytes stands out as a key pathogenic player. In this review, we will discuss the evidence and potential mechanisms involved in the apoptosis of hepatocytes induced by HIV, HIV-encoded proteins, or cART. Some antiretroviral drugs, especially the older generation, can induce apoptosis of hepatic cells, which occurs through a variety of mechanisms, such as mitochondrial dysfunction, increased production of reactive oxygen species (ROS), and induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR), all of which ultimately lead to caspase activation and cell death.


Subject(s)
Apoptosis , HIV Infections/pathology , HIV Infections/therapy , Hepatocytes/pathology , Antiretroviral Therapy, Highly Active , Hepatocytes/metabolism , Humans , Liver/pathology , Models, Biological
6.
Antiviral Res ; 178: 104784, 2020 06.
Article in English | MEDLINE | ID: mdl-32272174

ABSTRACT

The improved effectiveness and safety of the combined antiretroviral therapy (cART) has largely diminished mortality and AIDS-defining morbidity of HIV-patients. Nevertheless, chronic age-related diseases in these individuals are more common and their underlying pathogenic mechanisms of these actions seem to involve accelerated aging and enhanced inflammation. The present study explores markers of these processes in a heterogenous Spanish HIV cohort using peripheral blood samples of HIV-patients and matched uninfected controls. We isolated periheral blood mononuclear cells (PBMCs) and i) compared the expression of a panel of 14 genes related to inflammation and senescence in PBMCs of HIV-patients vs matched uninfected controls, ii) analyzed the expression in HIV-patients in association with a number of demographic, biochemical and immunological parameters and iii) in relation with the current cART they received. PBMCs of HIV-patients displayed significantly increased expression of general inflammatory genes (IL6, IL18 and CXCL10) and this occurs irrespectively of the antiviral therapy they have been receiving. Conversely, levels of senescence-associated genes TP53, SERPINE1andIGFBP3 were slightly but significantly reduced in patients compared to uninfected matched individuals and this effect is related to NNRTI-containing treatments. The expression of the inflammatory markers IL6, IL18, IL1B, TNFA, RELA, CCL2, CCL20 and CXCL10 displayed correlation with certain demographic, morbidity- and HIV infection-related parameters. The levels of TP53 mRNA were positively associated only with plasma LDL. Correlation analysis between the expressions of pairs of genes revealed a different pattern between HIV-patients and controls. The diminished expression of TP53 and SERPINE1 in HIV-patients was also observed at a protein level, and the correlation between the two proteins (p53 and PAI1) in patients and controls showed the opposite trend. In conclusion, HIV-patients show dysregulation of p53 and p53-related mediators, a phenomenon which may be of pathophysiological relevance and could be related to the shorter health- and/or life-span observed in these individuals.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/blood , HIV Infections/drug therapy , Insulin-Like Growth Factor Binding Protein 3/genetics , Leukocytes, Mononuclear/metabolism , Plasminogen Activator Inhibitor 1/genetics , Reverse Transcriptase Inhibitors/therapeutic use , Tumor Suppressor Protein p53/genetics , Adult , Antiretroviral Therapy, Highly Active , Cellular Senescence , Chemokine CXCL10/blood , Chemokine CXCL10/genetics , Down-Regulation , Female , HIV Infections/genetics , Humans , Inflammation , Insulin-Like Growth Factor Binding Protein 3/blood , Interleukin-18/blood , Interleukin-18/genetics , Interleukin-6/blood , Interleukin-6/genetics , Leukocytes, Mononuclear/drug effects , Male , Middle Aged , Plasminogen Activator Inhibitor 1/blood , Tumor Suppressor Protein p53/blood
7.
Gut ; 69(5): 920-932, 2020 05.
Article in English | MEDLINE | ID: mdl-31530714

ABSTRACT

OBJECTIVE: Liver fibrosis constitutes a major health problem worldwide due to its rapidly increasing prevalence and the lack of specific and effective treatments. Growing evidence suggests that signalling through cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways regulates liver fibrosis and regeneration. Rilpivirine (RPV) is a widely used anti-HIV drug not reported to produce hepatotoxicity. We aimed to describe the potential hepatoprotective effects of RPV in different models of chronic liver injury, focusing on JAK-STAT signalling regulation. DESIGN: The effects of RPV on hepatic steatosis, inflammation and fibrogenesis were studied in a nutritional mouse model of non-alcoholic fatty liver disease, carbon tetrachloride-induced fibrosis and bile duct ligation-induced fibrosis. Primary human hepatic stellate cells (hHSC) and human cell lines LX-2 and Hep3B were used to investigate the underlying molecular mechanisms. RESULTS: RPV exerted a clear anti-inflammatory and antifibrotic effect in all the in vivo models of liver injury employed, and enhanced STAT3-dependent proliferation in hepatocytes and apoptosis in HSC through selective STAT1 activation. These results were reproduced in vitro; RPV undermined STAT3 activation and triggered STAT1-mediated pathways and apoptosis in HSC. Interestingly, this selective pro-apoptotic effect completely disappeared when STAT1 was silenced. Conditioned medium experiments showed that HSC apoptosis activated STAT3 in hepatocytes in an interleukin-6-dependent mechanism. CONCLUSION: RPV ameliorates liver fibrosis through selective STAT1-dependent induction of apoptosis in HSC, which exert paracrinal effects in hepatocytes, thus promoting liver regeneration. RPV's actions may represent an effective strategy to treat chronic liver diseases of different aetiologies and help identify novel therapeutic targets.


Subject(s)
Hepatic Stellate Cells/drug effects , Liver Regeneration/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Rilpivirine/pharmacology , STAT1 Transcription Factor/drug effects , STAT3 Transcription Factor/drug effects , Animals , Apoptosis/drug effects , Cells, Cultured , Disease Models, Animal , Humans , Liver Cirrhosis/pathology , Mice , Non-alcoholic Fatty Liver Disease/pathology , Risk Assessment , STAT1 Transcription Factor/metabolism , Sensitivity and Specificity , Treatment Outcome
8.
Br J Pharmacol ; 175(3): 440-455, 2018 02.
Article in English | MEDLINE | ID: mdl-29148034

ABSTRACT

BACKGROUND AND PURPOSE: SQSTM1/p62 is a multifunctional, stress-induced, scaffold protein involved in multiple cellular processes including autophagic clearance, regulation of inflammatory responses and redox homeostasis. Its altered function has been associated with different human pathologies, such as neurodegenerative, metabolic and bone diseases (down-regulation), and cancerogenesis (up-regulation). However, its role in the off-target effects of clinically used drugs is still not understood. EXPERIMENTAL APPROACH: We evaluated the expression of p62 in cultured Hep3B cells and their derived ρ° cells (lacking mitochondria), along with markers of autophagy and mitochondrial dysfunction. The effects of efavirenz were compared with those of known pharmacological stressors, rotenone, thapsigargin and CCCP, and we also used transient silencing with siRNA and p62 overexpression. Western blotting, quantRT-PCR and fluorescence microscopy were used to assay these effects and their underlying mechanisms. KEY RESULTS: In Hep3B cells, efavirenz augmented p62 protein content, an effect not observed in the corresponding ρ° cells. p62 up-regulation followed enhanced SQSTM1 expression mediated through the transcription factor CHOP/DDIT3, while other well-known regulators (NF-kB and Nrf2) were not involved. Inhibition of autophagy with 3MA or with transient silencing of Atg5 did not affect SQSTM1 expression in efavirenz-treated cells while p62 overexpression ameliorated the deleterious effect of efavirenz on cell viability. CONCLUSION AND IMPLICATIONS: In our model, p62 exerted a specific, autophagy-independent role and protected against efavirenz-induced mitochondrial ROS generation and activation of the NLRP3 inflammasome. These findings add to the multifunctional nature of p62 and may help to understand the off-target effects of clinically useful drugs.


Subject(s)
Autophagy/drug effects , Autophagy/physiology , Benzoxazines/toxicity , Sequestosome-1 Protein/physiology , Alkynes , Cell Line, Tumor , Cyclopropanes , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/physiology , Humans , Reactive Oxygen Species/metabolism , Reverse Transcriptase Inhibitors/toxicity
9.
Br J Pharmacol ; 174(23): 4409-4429, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28940366

ABSTRACT

BACKGROUND AND PURPOSE: Mitochondria-associated membranes (MAMs) are specific endoplasmic reticulum (ER) domains that enable it to interact directly with mitochondria and mediate metabolic flow and Ca2+ transfer. A growing list of proteins have been identified as MAMs components, but how they are recruited and function during complex cell stress situations is still not understood, while the participation of mitochondrial matrix proteins is largely unrecognized. EXPERIMENTAL APPROACH: This work compares mitochondrial/ER contact during combined ER stress/mitochondrial dysfunction using a model of human hepatoma cells (Hep3B cell line) treated for 24 h with classic pharmacological inducers of ER stress (thapsigargin), mitochondrial dysfunction (carbonyl cyanide m-chlorophenyl hydrazone or rotenone) or both (the antiretroviral drug efavirenz used at clinically relevant concentrations). KEY RESULTS: Markers of mitochondrial dynamics (dynamin-related protein 1, optic atrophy 1 and mitofusin 2) were expressed differently with these stimuli, pointing to a specificity of combined ER/mitochondrial stress. Lon, a matrix protease involved in protein and mtDNA quality control, was up-regulated at mRNA and protein levels under all conditions. However, only efavirenz decreased the mitochondrial content of Lon while increasing its extramitochondrial presence and its localization to MAMs. This latter effect resulted in an enhanced mitochondria/ER interaction, as shown by co-immunoprecipitation experiments of MAMs protein partners and confocal microscopy imaging. CONCLUSION AND IMPLICATIONS: A specific dual drug-induced mitochondria-ER effect enhances the MAMs content of Lon and its extramitochondrial expression. This is the first report of this phenomenon and suggests a novel MAMs-linked function of Lon protease.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mitochondria/drug effects , Protease La/metabolism , Alkynes , Benzoxazines/pharmacology , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Line, Tumor , Cyclopropanes , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Humans , Microscopy, Confocal , Mitochondria/pathology , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Rotenone/pharmacology , Thapsigargin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...