Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731918

ABSTRACT

In the age of information technology and the additional computational search tools and software available, this systematic review aimed to identify potential therapeutic targets for obesity, evaluated in silico and subsequently validated in vivo. The systematic review was initially guided by the research question "What therapeutic targets have been used in in silico analysis for the treatment of obesity?" and structured based on the acronym PECo (P, problem; E, exposure; Co, context). The systematic review protocol was formulated and registered in PROSPERO (CRD42022353808) in accordance with the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis Protocols (PRISMA-P), and the PRISMA was followed for the systematic review. The studies were selected according to the eligibility criteria, aligned with PECo, in the following databases: PubMed, ScienceDirect, Scopus, Web of Science, BVS, and EMBASE. The search strategy yielded 1142 articles, from which, based on the evaluation criteria, 12 were included in the systematic review. Only seven these articles allowed the identification of both in silico and in vivo reassessed therapeutic targets. Among these targets, five were exclusively experimental, one was exclusively theoretical, and one of the targets presented an experimental portion and a portion obtained by modeling. The predominant methodology used was molecular docking and the most studied target was Human Pancreatic Lipase (HPL) (n = 4). The lack of methodological details resulted in more than 50% of the papers being categorized with an "unclear risk of bias" across eight out of the eleven evaluated criteria. From the current systematic review, it seems evident that integrating in silico methodologies into studies of potential drug targets for the exploration of new therapeutic agents provides an important tool, given the ongoing challenges in controlling obesity.


Subject(s)
Computer Simulation , Obesity , Humans , Obesity/drug therapy , Obesity/metabolism , Animals , Molecular Docking Simulation , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Lipase/metabolism , Lipase/antagonists & inhibitors , Molecular Targeted Therapy/methods
2.
Int J Mol Sci ; 24(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37445834

ABSTRACT

The present study investigated the effect of gelatin-based nanoparticles (EPG) loaded with a carotenoid-rich crude extract (CE) on systemic and adipose tissue inflammatory response in a model with inflammation induced by a high glycemic index and high glycemic load diet (HGLI). Nanoparticles synthesized were characterized by different physical and chemical methods. The in vivo investigation evaluated Wistar rats (n = 20, 11 days, adult male with 21 weeks) subdivided into untreated (HGLI diet), conventional treatment (nutritionally adequate diet), treatment 1 (HGLI + crude extract (12.5 mg/kg)), and treatment 2 (HGLI + EPG (50 mg/kg)) groups. Dietary intake, caloric intake and efficiency, weight, inflammatory cytokines tissue concentration, visceral adipose tissue (VAT) weight, histopathological analysis, and antioxidant activity in plasma and VAT were investigated. EPG showed the same physical and chemical characteristics as previous batches (95.2 nm, smooth surface, and chemical interactions between materials). The EPG-treated group was the only group promoting negative ∆dietary intake, ∆caloric efficiency, and ∆weight. In addition, it presented a significant reduction (p < 0.05) in IL-6 and leptin levels and a greater presence of multilocular adipocytes. The results suggest that EPG can act as a nutraceutical in adjuvant therapy for treating inflammatory diseases associated with adipose tissue accumulation.


Subject(s)
Cytokines , Obesity , Rats , Animals , Male , Rats, Wistar , Obesity/pathology , Cytokines/pharmacology , Gelatin/pharmacology , Adipose Tissue/pathology , Adipocytes , Hypertrophy/pathology , Carotenoids/pharmacology
3.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37049259

ABSTRACT

The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as promising molecules with anti-obesity action. However, oral administration and passage through the gastrointestinal tract face numerous physiological barriers that impair their bioactive function. Encapsulation aims to protect the active substance and modify the action, one possibility of potentiating anti-obesity activity. Research with encapsulated peptides and proteins has demonstrated improved stability, delivery, controlled release, and increased bioactivity. However, it is necessary to explore how proteins and peptides affect weight loss and satiety, can impact the nutritional status of obesity, and how encapsulation can enhance the bioactive effects of these molecules. This integrative review aimed to discuss how the encapsulation of protein molecules impacts the nutritional status of obesity. From the studies selected following pre-established criteria, it was possible to infer that the encapsulation of proteins and peptides can contribute to greater efficiency in reducing weight gain, changes in adipose tissue function, and lower hormone levels that modulate appetite and body weight in animals with obesity.

SELECTION OF CITATIONS
SEARCH DETAIL
...