Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 17(3)2017 Mar 12.
Article in English | MEDLINE | ID: mdl-28287495

ABSTRACT

We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor's capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor's root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 µ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

2.
Opt Lett ; 41(22): 5186-5189, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27842089

ABSTRACT

A technique to eliminate the offset drift in the demodulator circuitry of open-loop interferometric fiber optic gyroscopes is presented. This technique employs a demodulation scheme that uses the area of the negative half-cycles of the output signal of a sinusoidally modulated gyroscope to obtain the angular velocity. We propose an electronic circuitry that periodically reverses the demodulator input, allowing for the acquisition of two samples of the gyroscope signal with the same magnitude and opposite polarities. The angular velocity is obtained from the subtraction of these two samples, suppressing the electronic offset. Experiments showed that the proposed method reduces the demodulator offset drift from 4.4 µV/°C to about 14 nV/°C, which is equivalent to a reduction, from 0.2 deg/h/°C to about 0.0006 deg/h/°C in the tested gyroscope. The proposed technique improved the bias stability of the tested gyroscope from 0.0162 to 0.0071 deg/h.

SELECTION OF CITATIONS
SEARCH DETAIL
...