Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Atheroscler Plus ; 48: 27-36, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36644561

ABSTRACT

Background and aims: Familial hypercholesterolemia (FH) is characterized by lifelong exposure to high LDL-c concentrations and premature atherosclerotic cardiovascular disease; nevertheless, disease severity can be heterogeneous.We aimed at evaluating if the immune-inflammatory system could modulate atherosclerosis burden in FH. Methods: From a cohort of subjects with confirmed FH (Dutch Lipid Clinic Network and genotype), 92 patients receiving high-intensity lipid-lowering therapy (statin ± ezetimibe) were included. The extension and severity of coronary atherosclerosis was assessed by standardized reporting systems (CAD-RADS) for coronary computed tomography angiography (CCTA) and coronary artery calcium (CAC) scores. Lipids, apolipoproteins, anti-oxLDL and anti-apolipoprotein B-D peptide (anti-ApoB-D) autoantibodies (IgM and IgG), lymphocytes subtypes, platelet, monocyte and endothelial microparticles (MP), IgM levels (circulating or produced by B1 cells) and cytokines in the supernatant of cultured cells were determined. Multiple linear regression models evaluated associations of these biomarkers with CAC and CAD-RADS scores. Results: In univariate analysis CAC correlated with age, systolic blood pressure, TCD4+ cells, and titers of IgM anti-ApoB-D. In multiple linear regression [ANOVA F = 2.976; p = 0.024; R2 = 0.082), CD4+T lymphocytes (B = 35.289; beta = 0.277; p = 0.010; 95%CI for B 8.727 to 61.851), was independently associated with CAC. CAD-RADS correlated with age, systolic blood pressure, titers of IgM anti-ApoB-D, and endothelial MP in univariate analysis. In multiple linear regression, [ANOVA F = 2.790; p = 0.032; R2 = 0.119), only age (B = 0.027; beta = 0.234; p = 0.049; 95% CI for B 0.000 to 0.053) was independent predictor. Conclusions: In subjects with FH, under high-intensity lipid-lowering therapy, age and CD4+T cells were associated to atherosclerosis burden.

2.
Am J Physiol Heart Circ Physiol ; 312(3): H437-H445, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27940965

ABSTRACT

Obesity is assumed to be a major cause of human essential hypertension; however, the mechanisms responsible for weight-related increase in blood pressure (BP) are not fully understood. The prevalence of hypertension induced by obesity has grown over the years, and the role of the renin-angiotensin-aldosterone system (RAAS) in this process continues to be elucidated. In this scenario, the ob/ob mice are a genetic obesity model generally used for metabolic disorder studies. These mice are normotensive even though they present several metabolic conditions that predispose them to hypertension. Although the normotensive trait in these mice is associated with the poor activation of sympathetic nervous system by the lack of leptin, we demonstrated that ob/ob mice present massively increased aminopeptidase A (APA) activity in the circulation. APA enzyme metabolizes angiotensin (ANG) II into ANG III, a peptide associated with intrarenal angiotensin type 2 (AT2) receptor activation and induction of natriuresis. In these mice, we found increased ANG-III levels in the circulation, high AT2 receptor expression in the kidney, and enhanced natriuresis. AT2 receptor blocking and APA inhibition increased BP, suggesting the ANG III-AT2 receptor axis as a complementary BP control mechanism. Circulating APA activity was significantly reduced by weight loss independently of leptin, indicating the role of fat tissue in APA production. Therefore, in this study we provide new data supporting the role of APA in BP control in ob/ob mouse strain. These findings improve our comprehension about obesity-related hypertension and suggest new tools for its treatment.NEW & NOTEWORTHY In this study, we reported an increased angiotensin III generation in the circulation of ob/ob mice caused by a high aminopeptidase A activity. These findings are associated with an increased natriuresis found in these mice and support the role of renin-angiotensin-aldosterone system as additional mechanism regulating blood pressure in this genetic obese strain.


Subject(s)
Blood Pressure , Glutamyl Aminopeptidase/metabolism , Obesity/physiopathology , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensins/blood , Animals , Caloric Restriction , Cyclic GMP/metabolism , Diet, High-Fat , Enzyme Inhibitors/pharmacology , Glutamyl Aminopeptidase/antagonists & inhibitors , Glutamyl Aminopeptidase/blood , Kidney/enzymology , Leptin/pharmacology , Male , Mice , Mice, Inbred C57BL , Sodium/urine
3.
Diabetes Metab Syndr Obes ; 8: 399-407, 2015.
Article in English | MEDLINE | ID: mdl-26346752

ABSTRACT

The kallikrein-kinin system is well known for its role in pain and inflammation, and has been shown recently by our group to have a role also in the regulation of energy expenditure. We have demonstrated that B1 receptor knockout (B1KO) mice are resistant to obesity induced by a high-fat diet (HFD) and that B1 receptor expression in adipocytes regulates glucose tolerance and predisposition to obesity. However, it is also known that in the absence of B1 receptor, the B2 receptor is overexpressed and can take over the function of its B1 counterpart, rendering uncertain the role of each kinin receptor in these metabolic effects. Therefore, we investigated the impact of ablation of each kinin receptor on energy metabolism using double kinin receptor knockout (B1B2KO) mice. Our data show that B1B2KO mice were resistant to HFD-induced obesity, with lower food intake and feed efficiency when compared with wild-type mice. They also had lower blood insulin and leptin levels and higher glucose tolerance after treatment with an HFD. Gene expression for tumor necrosis factor-alpha and C-reactive protein, which are important genes for insulin resistance, was reduced in white adipose tissue, skeletal muscle, and the liver in B1B2KO mice after the HFD. In summary, our data show that disruption of kinin B1 and B2 receptors has a profound impact on metabolic homeostasis in mice, by improving glucose tolerance and preventing HFD-induced obesity. These novel findings could pave the way for development of new pharmacological strategies to treat metabolic disorders such as insulin resistance and obesity.

4.
Hypertension ; 57(5): 965-72, 2011 May.
Article in English | MEDLINE | ID: mdl-21422380

ABSTRACT

Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system.


Subject(s)
Angiotensin II/metabolism , Calcium Signaling/physiology , Peptidyl-Dipeptidase A/metabolism , Analysis of Variance , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , CHO Cells , Calcium Signaling/drug effects , Cells, Cultured , Cricetinae , Cricetulus , Flow Cytometry , Lisinopril/pharmacology , Mice , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...