Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biochimie ; 208: 141-150, 2023 May.
Article in English | MEDLINE | ID: mdl-36586562

ABSTRACT

Natural metabolites present an extraordinary chemo-diversity and have been used as the inspiration for new drugs. Considering the need for new treatments against the neglected parasitic disease leishmaniasis, three semi-synthetic derivatives of natural neolignane licarin A were prepared: O-acetyl (1a), O-allyl (1b), and 5-allyl (1c). Using an ex vivo assay, compounds 1a, 1b, and 1c showed activity against the intracellular amastigotes of Leishmania (L.) infantum, with IC50 values of 9, 13, and 10 µM, respectively. Despite no induction of hemolytic activity, only compound 1b resulted in mammalian cytotoxicity (CC50 = 64 µM). The most potent compounds (1a and 1c) resulted in selectivity indexes >18. The mechanism of action of compound 1c was evaluated by fluorescent/luminescent based techniques and MALDI-TOF/MS. After a short incubation period, increased levels of the cytosolic calcium were observed in the parasites, with alkalinization of the acidocalcisomes. Compound 1c also induced mitochondrial hyperpolarization, resulting in decreased levels of ATP without altering the reactive oxygen species (ROS). Neither plasma membrane damages nor DNA fragmentation were observed after the treatment, but a reduction in the cellular proliferation was detected. Using MALDI-TOF/MS, mass spectral alterations of promastigote proteins were observed when compared to untreated and miltefosine-treated groups. This chemically modified neolignan induced lethal alterations of the bioenergetic and protein metabolism of Leishmania. Future PKPD and animal efficacy studies are needed to optimize this promising natural-derived compound.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Animals , Mice , Antiprotozoal Agents/pharmacology , Calcium/metabolism , Leishmania infantum/metabolism , Energy Metabolism , Mice, Inbred BALB C , Mammals/metabolism
2.
Chem Biodivers ; 18(10): e2100503, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34418297

ABSTRACT

Infections caused by parasitic worms impose a considerable worldwide health burden. One of the most impactful is schistosomiasis, a disease caused by blood-dwelling of the genus Schistosoma that affects more than 230 million people worldwide. Since praziquantel has also been extensively used to treat schistosomiasis and other parasitic flatworm infections, there is an urgent need to identify novel anthelmintic compounds, mainly from natural sources. In this study, the hexane extract from roots of Piper malacophyllum (Piperaceae) showed to be mainly composed for gibbilimbol B by HPLC/ESI-HRMS. Based on this result, this compound was isolated by chromatographic steps and its structure was confirmed by NMR. In vitro bioassays showed that gibbilimbol B was more active than praziquantel against larval stage of S. mansoni, with effective concentrations of 50 % (EC50 ) and 90 % (EC90 ) values of 2.6 and 3.4 µM, respectively. Importantly, gibbilimbol B showed no cytotoxicity to mammalian cells at a concentration 190 times greater than the antiparasitic effect, giving support for the anthelmintic potential of gibbilimbol B as lead compound for novel antischistosomal agents.


Subject(s)
Phenols/pharmacology , Piperaceae/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Animals , Molecular Structure , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/chemistry
3.
Chem Biodivers ; 18(10): e2100515, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34424612

ABSTRACT

The search for the pharmacophore of a bioactive compound, crucial for drug discovery studies, involves the adequate arrangement of different atoms in the molecule. As part of a continuous work aiming discovery of new drug candidates against the protozoan parasite Trypanosoma cruzi, the hexane extract of Hydrocotyle bonariensis was subjected to a bioactivity-guided fractionation to afford two chemically related dibenzylbutyrolactone lignans - hinokinin (1) and hibalactone (2). Compounds 1 and 2 showed activity against trypomastigote with EC50 values of 17.0 and 69.4 µM, respectively. Compound 1 was also active against the clinically relevant form of the parasite, amastigotes, displaying an EC50 value of 34.4 µM. The structure-activity relationship (SAR) indicated that the absence of the double bond at C-7 is a crucial feature for the increment of the antiparasitic activity. The lethal action of the most potent compound 1 was investigated in the trypomastigotes. The fluorescent-based assay with SYTOX Green demonstrated a significant alteration of the plasma membrane permeability of the parasite. Additionally, compound 1 demonstrated no significant hemolytic activity in mice erythrocytes at 200 µM. To search the pharmacophore, three different simplified compounds - 3,4-methylenedioxydihydrocinnamic acid (3), 3,4-methylenedioxydihydrocinnamic alcohol (4) and 3,4-methylenedioxycinnamic acid (5) - were prepared and tested against T. cruzi. These derivatives displayed EC50 values of 37.2 (3), 25.8 (4) and 73.5 (5) µM against trypomastigotes, and 41.3 (3) and 48.2 (4) µM against amastigotes, whereas compound 5 was inactive. Except for compound 2, which resulted in a CC50 value of 114.5 µM, all compounds showed no mammalian cytotoxicity at 200 µM. An in silico ADMET study was performed and predicted values demonstrated an acceptable drug-likeness profile for compounds 1-5. Despite the minor reduction in the potency, the simplified derivatives retained the antitrypanosomal activity against the intracellular amastigotes, even with 95 % reduction of their molecular weight. Additionally, in silico studies suggested them as more soluble compounds, making these simplified structures promising scaffolds for optimization studies in Chagas disease.


Subject(s)
Apiaceae/chemistry , Lignans/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Lignans/chemistry , Lignans/isolation & purification , Molecular Structure , Parasitic Sensitivity Tests , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification
4.
Phytother Res ; 35(9): 5154-5162, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34089558

ABSTRACT

Schistosomiasis is a widespread human parasitic disease currently affecting over 200 million people, particularly in poor communities. Chemotherapy for schistosomiasis relies exclusively on praziquantel (PZQ). Previous studies have shown that licarin A (LIC-A), a dihydrobenzofuran neolignan, exhibited in vitro antiparasitic activity against Schistosoma mansoni adult worms. This study aimed to investigate the potential of LIC-A, isolated as main metabolite from leaves of Nectandra oppositifolia Nees & Mart. (Lauraceae), as an antischistosomal agent orally active in schistosomiasis animal model. PZQ was used as a reference compound. As result, LIC-A showed, at a single dose of 400 mg/kg, to be able to partially cure infected mice (worm burden reductions of ~50%). Parasite eggs, that are responsible for a variety of pathologies and transmission of schistosomiasis, were also moderately inhibited by LIC-A (egg burden reductions of ~50%-60%). Furthermore, it was observed that LIC-A achieved a slight reduction of hepatomegaly and splenomegaly. Collectively, although LIC-A was partially active when administered orally, these results give support for the antiparasitic potential LIC-A as lead compound for novel antischistosomal agent.


Subject(s)
Lauraceae , Lignans , Schistosomiasis mansoni , Animals , Lauraceae/chemistry , Lignans/pharmacology , Mice , Parasite Egg Count , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy
5.
Parasit Vectors ; 13(1): 278, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32487175

ABSTRACT

BACKGROUND: Schistosomiasis is a socioeconomically devastating parasitic infection afflicting hundreds of millions of people and animals worldwide. It is the most important helminth infection, and its treatment relies solely on the drug praziquantel. Oral H1-antihistamines are available worldwide, and these agents are among the most widely used of all medications in children and adults. Given the importance of the drug repositioning strategy, we evaluated the antischistosomal properties of the H1-antihistamine drugs commonly used in clinical practices. METHODS: Twenty-one antihistamine drugs were initially screened against adult schistosomes ex vivo. Subsequently, we investigated the anthelmintic properties of these antihistamines in a murine model of schistosomiasis for both early and chronic S. mansoni infections at oral dosages of 400 mg/kg single dose or 100 mg/kg daily for five consecutive days. We also demonstrated and described the ability of three antihistamines to induce tegumental damage in schistosomes through the use of scanning electron microscopy. RESULTS: From phenotypic screening, we found that desloratadine, rupatadine, promethazine, and cinnarizine kill adult S. mansoni in vitro at low concentrations (5-15 µM). These results were further supported by scanning electron microscopy analysis. In an animal model, rupatadine and cinnarizine revealed moderate worm burden reductions in mice harboring either early or chronic S. mansoni infection. Egg production, a key mechanism for both transmission and pathogenesis, was also markedly inhibited by rupatadine and cinnarizine, and a significant reduction in hepatomegaly and splenomegaly was recorded. Although less effective, desloratadine also revealed significant activity against the adult and juvenile parasites. CONCLUSIONS: Although the worm burden reductions achieved are all only moderate, comparatively, treatment with any of the three antihistamines is more effective in early infection than praziquantel. On the other hand, the clinical use of H1-antihistamines for the treatment of schistosomiasis is highly unlikely.


Subject(s)
Drug Repositioning , Histamine H1 Antagonists/therapeutic use , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Animals , Disease Models, Animal , Female , Histamine H1 Antagonists/classification , Male , Mice , Parasite Load , Schistosoma mansoni/drug effects
6.
Sci Rep ; 10(1): 5467, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214193

ABSTRACT

Neolignan licarin A (1) was isolated from leaves of Nectandra oppositifolia (Lauraceae) and displayed activity against trypomastigote forms of the etiologic agent of American trypanosomiasis, Trypanosoma cruzi. Aiming for the establishment of SAR, five different compounds (1a - 1e) were prepared and tested against T. cruzi. The 2-allyl derivative of licarin A (1d) exhibited higher activity against trypomastigotes of T. cruzi (IC50 = 5.0 µM and SI = 9.0), while its heterocyclic derivative 1e displayed IC50 of 10.5 µM and reduced toxicity against NCTC cells (SI > 19.0). However, these compounds presented limited oral bioavailability estimation (<85%, Papp <1.0 × 10-6 cm/s) in parallel artificial membrane permeability assays (PAMPA) due to excessive lipophilicity. Based on these results, different simplified structures of licarin A were designed: vanillin (2), vanillyl alcohol (3), isoeugenol (4), and eugenol (5), as well as its corresponding methyl (a), acetyl (b), O-allyl (c), and C-allyl (d) analogues. Vanillin (2) and its acetyl derivative (2b) displayed expressive activity against intracellular amastigotes of T. cruzi with IC50 values of 5.5 and 5.6 µM, respectively, and reduced toxicity against NCTC cells (CC50 > 200 µM). In addition, these simplified analogues showed a better permeability profile (Papp > 1.0 × 10-6 cm/s) on PAMPA models, resulting in improved drug-likeness. Vanillyl alcohol acetyl derivative (3b) and isoeugenol methyl derivative (4a) displayed activity against the extracellular forms of T. cruzi (trypomastigotes) with IC50 values of 5.1 and 8.8 µM respectively. Based on these results, compounds with higher selectivity index against extracellular forms of the parasite (1d, 1e, 3d, and 4a) were selected for a mechanism of action study. After a short incubation period (1 h) all compounds increased the reactive oxygen species (ROS) levels of trypomastigotes, suggesting cellular oxidative stress. The ATP levels were increased after two hours of incubation, possibly involving a high energy expenditure of the parasite to control the homeostasis. Except for compound 4a, all compounds induced hyperpolarization of mitochondrial membrane potential, demonstrating a mitochondrial imbalance. Considering the unique mitochondria apparatus of T. cruzi and the lethal alterations induced by structurally based on licarin A, these compounds are interesting hits for future drug discovery studies in Chagas disease.


Subject(s)
Antiparasitic Agents/isolation & purification , Antiparasitic Agents/pharmacology , Biological Products/isolation & purification , Chagas Disease/drug therapy , Lauraceae/chemistry , Lignans/isolation & purification , Lignans/pharmacology , Plant Leaves/chemistry , Trypanocidal Agents/isolation & purification , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antiparasitic Agents/chemical synthesis , Biological Products/chemical synthesis , Biological Products/pharmacology , Drug Discovery , Lignans/chemical synthesis , Oxidative Stress/drug effects , Phytotherapy , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanosoma cruzi/metabolism
7.
Acta Trop ; 205: 105350, 2020 May.
Article in English | MEDLINE | ID: mdl-31962096

ABSTRACT

Schistosomiasis is one of the most important parasitic infections in terms of its negative effects on public health and economics. Since praziquantel is currently the only drug available to treat schistosomiasis, there is an urgent need to identify new anthelmintic agents. Piplartine, also known as piperlongumine, is a biologically active alkaloid/amide from peppers that can be detected in high amounts in the roots of Piper tuberculatum. Previously, it has been shown to have in vitro schistosomicidal effects. However, its anthelmintic activity in an animal host has not been reported. In the present work, in vivo antischistosomal properties of isolated piplartine were evaluated in a mouse model of schistosomiasis infected with either adult (patent infection) or juvenile (pre-patent infection) stages of Schistosoma mansoni. A single dose of piplartine (100, 200 or 400 mg/kg) or daily doses for five consecutive days (100 mg/kg/day) administered orally to mice infected with schistosomes resulted in a reduction in worm burden and egg production. Treatment with the highest piplartine dose (400 mg/kg) caused a significant reduction in a total worm burden of 60.4% (P < 0.001) in mice harbouring adult parasites. S. mansoni egg production, a process responsible for pathology in schistosomiasis, was also significantly inhibited by piplartine. Studies using scanning electron microscopy revealed substantial tegumental alterations in parasites recovered from mice. Since piplartine has well-characterized mechanisms of toxicity, is easily available, and is cost-effective, our results indicate that this bioactive molecule derived from medicinal plants could be a potential lead compound for novel antischistosomal agents.


Subject(s)
Piperidones/therapeutic use , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Animals , Disease Models, Animal , Female , Mice , Piper/chemistry
8.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Article in English | MEDLINE | ID: mdl-31527034

ABSTRACT

The treatment and control of schistosomiasis, a neglected disease that affects more than 200 million people worldwide, rely on the use of a single drug, praziquantel. A vaccine has yet to be developed and since new drug design and development is a lengthy and costly process, drug repurposing is a promising strategy. In this study, the efficacy of promethazine, a first-generation antihistamine, was evaluated against Schistosoma mansoni ex vivo and in a murine model of schistosomiasis. In vitro assays demonstrated that promethazine affected parasite motility, viability, and it induced severe tegumental damage in schistosomes. The LC50 of the drug was 5.84 µM. Similar to promethazine, schistosomes incubated with atropine, a classical anticholinergic drug, displayed reduced motor activity. In an animal model, promethazine treatment was introduced at an oral dose of 100 mg/kg for five successive days at different intervals from the time of infection, for the evaluation of the stage-specific susceptibility (pre-patent and patent infections). Various parasitological criteria indicated the in vivo antischistosomal effects of promethazine: there were significant reductions in worm burden, egg production, and hepato- and splenomegaly. The highest worm burden reduction was achieved with promethazine in patent infections (> 90%). Taken together, considering the importance of the repositioning of drugs in infectious diseases, especially those related to poverty, our data revealed the possibility of promethazine repositioning as an antischistosomal agent.

9.
Bioorg Chem ; 89: 103001, 2019 08.
Article in English | MEDLINE | ID: mdl-31129501

ABSTRACT

This work describes the isolation of six metabolites from leaves and branches of Piper cernuum (Piperaceae): (-)-cubebin (1), (-)-hinokinin (2), (-)-kusunokinin (3), trans-dehydroagarofuran (4), 11-hydroxi-4,5-secoeudesmane-4,5-dione (5), and (-)-bornyl p-coumarate (6). Antitrypanosomal activity and toxicity of purified compounds were performed in vitro against trypomastigote forms of Trypanosoma cruzi and NCTC cells, respectively. Compounds 2, 3 and 5 showed moderate activities with IC50 values of 33.1, 31.8 and 45.9 µM, respectively, while compounds 1 and 4 were inactive (IC50 > 100 µM). On the other hand, compound 6 displayed an IC50 value of 2.1 µM, a selectivity index (SI) of 18 and induced a considerable interference in the plasma membrane permeability (87%) in trypomastigotes of T. cruzi. Additionally, the lethal effect of compound 6 in T. cruzi could be associated to the plasma membrane permeability. Finally, experiments using scanning electron microscopy (SEM) confirmed the obtained results in which was possible to observe total alteration parasites topography after treatment with compound 6 in comparison to untreated parasites. These data indicated that the lethal action of compound 6 is directly related to structural disruption of the membrane.


Subject(s)
Cell Membrane Permeability/drug effects , Coumaric Acids/pharmacology , Piperaceae/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cells, Cultured , Coumaric Acids/chemistry , Coumaric Acids/isolation & purification , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification
10.
Exp Parasitol ; 174: 1-9, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28126391

ABSTRACT

The development of novel drugs for the treatment of leishmaniases continues to be crucial to overcome the severe impacts of these diseases on human and animal health. Several bioactivities have been described in extracts from macroalgae belonging to the Cystoseira genus. However, none of the studies has reported the chemical compounds responsible for the antileishmanial activity observed upon incubation of the parasite with the aforementioned extracts. Thus, this work aimed to isolate and characterize the molecules present in a hexane extract of Cystoseira baccata that was found to be bioactive against Leishmania infantum in a previous screening effort. A bioactivity-guided fractionation of the C. baccata extract was carried out and the inhibitory potential of the isolated compounds was evaluated via the MTT assay against promastigotes and murine macrophages as well as direct counting against intracellular amastigotes. Moreover, the promastigote ultrastructure, DNA fragmentation and changes in the mitochondrial potential were assessed to unravel their mechanism of action. In this process, two antileishmanial meroditerpenoids, (3R)- and (3S)-tetraprenyltoluquinol (1a/1b) and (3R)- and (3S)-tetraprenyltoluquinone (2a/2b), were isolated. Compounds 1 and 2 inhibited the growth of the L. infantum promastigotes (IC50 = 44.9 ± 4.3 and 94.4 ± 10.1 µM, respectively), inducing cytoplasmic vacuolization and the presence of coiled multilamellar structures in mitochondria as well as an intense disruption of the mitochondrial membrane potential. Compound 1 decreased the intracellular infection index (IC50 = 25.0 ± 4.1 µM), while compound 2 eliminated 50% of the intracellular amastigotes at a concentration > 88.0 µM. This work identified compound 2 as a novel metabolite and compound 1 as a biochemical isolated from Cystoseira algae displaying antileishmanial activity. Compound 1 can thus be an interesting scaffold for the development of novel chemotherapeutic molecules for canine and human visceral leishmaniases studies. This work reinforces the evidence of the marine environment as source of novel molecules.


Subject(s)
Antiprotozoal Agents/pharmacology , Diterpenes/pharmacology , Leishmania infantum/drug effects , Phaeophyceae/chemistry , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Biomass , DNA Fragmentation , DNA, Protozoan/drug effects , Diterpenes/chemistry , Diterpenes/isolation & purification , Inhibitory Concentration 50 , Leishmania infantum/genetics , Leishmania infantum/ultrastructure , Macrophages, Peritoneal/drug effects , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Nitric Oxide/metabolism , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Portugal , Spectrophotometry/methods
11.
PeerJ ; 4: e1704, 2016.
Article in English | MEDLINE | ID: mdl-26925328

ABSTRACT

Marine organisms are a prolific source of drug leads in a variety of therapeutic areas. In the last few years, biomedical, pharmaceutical and nutraceutical industries have shown growing interest in novel compounds from marine organisms, including macroalgae. Cystoseira is a genus of Phaeophyceae (Fucales) macroalgae known to contain bioactive compounds. Organic extracts (hexane, diethyl ether, ethyl acetate and methanol extracts) from three Cystoseira species (C. humilis, C. tamariscifolia and C. usneoides) were evaluated for their total phenolic content, radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals, and antiproliferative activity against a human hepatocarcinoma cell line (HepG2 cells). C. tamariscifolia had the highest TPC and RSA. The hexane extract of C. tamariscifolia (CTH) had the highest cytotoxic activity (IC50 = 2.31 µg/mL), and was further tested in four human tumor (cervical adenocarcinoma HeLa; gastric adenocarcinoma AGS; colorectal adenocarcinoma HCT-15; neuroblastoma SH-SY5Y), and two non-tumor (murine bone marrow stroma S17 and human umbilical vein endothelial HUVEC) cell lines in order to determine its selectivity. CTH strongly reduced viability of all tumor cell lines, especially of HepG2 cells. Cytotoxicity was particularly selective for the latter cells with a selectivity index = 12.6 as compared to non-tumor cells. Incubation with CTH led to a 2-fold decrease of HepG2 cell proliferation as shown by the bromodeoxyuridine (BrdU) incorporation assay. CTH-treated HepG2 cells presented also pro-apoptotic features, such as increased Annexin V/propidium iodide (PI) binding and dose-dependent morphological alterations in DAPI-stained cells. Moreover, it had a noticeable disaggregating effect on 3D multicellular tumor spheroids. Demethoxy cystoketal chromane, a derivative of the meroditerpenoid cystoketal, was identified as the active compound in CTH and was shown to display selective in vitro cytotoxicity towards HepG2 cells.

12.
Molecules ; 19(5): 5761-76, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24802987

ABSTRACT

Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae), and nine semi-synthetic derivatives were investigated against Leishmania (L.) infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR) data as well as electrospray ionization mass spectrometry (ESI-MS). Additionally, structure-activity relationships were performed using Decision Trees.


Subject(s)
Structure-Activity Relationship , Triterpenes/administration & dosage , Triterpenes/chemical synthesis , Anacardiaceae/chemistry , Anacardiaceae/drug effects , Animals , Antiparasitic Agents/administration & dosage , Antiprotozoal Agents/administration & dosage , Chagas Disease/drug therapy , Chagas Disease/genetics , Chagas Disease/pathology , Humans , Leishmania/drug effects , Plant Extracts/chemistry , Plant Leaves/chemistry , Triterpenes/chemistry , Trypanosoma cruzi/drug effects
13.
Parasitol Res ; 110(1): 95-101, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21614544

ABSTRACT

Leishmaniasis, Chagas disease, and malaria affect the poorest population around the world, with an elevated mortality and morbidity. In addition, the therapeutic alternatives are usually toxic or ineffective drugs especially those against the trypanosomatids. In the course of selection of new anti-protozoal compounds from Brazilian flora, the CH(2)C(l2) phase from MeOH extract obtained from the leaves of Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae) showed in vitro anti-leishmanial, anti-malarial, and anti-trypanosomal activities. The chromatographic fractionation of the CH(2)Cl(2) phase led to the isolation of the bioactive compound, which was characterized as jacaranone [methyl (1-hydroxy-4-oxo-2,5-cyclohexandienyl)acetate], by spectroscopic methods. This compound showed activity against promastigotes of Leishmania (L.) chagasi, Leishmania (V.) braziliensis, and Leishmania (L.). amazonensis showing an IC(50) of 17.22, 12.93, and 11.86 µg/mL, respectively. Jacaranone was also tested in vitro against the Trypanosoma cruzi trypomastigotes and Plasmodium falciparum chloroquine-resistant parasites (K1 strain) showing an IC(50) of 13 and 7.82 µg/mL, respectively, and was 3.5-fold more effective than benznidazole in anti-Trypanosoma cruzi assay. However, despite of the potential against promatigotes forms, this compound was not effective against amastigotes of L. (L.) chagasi and T. cruzi. The cytotoxicity study using Kidney Rhesus monkey cells, demonstrated that jacaranone showed selectivity against P. falciparum (21.75 µg/mL) and a selectivity index of 3. The obtained results suggested that jacaranone, as other similar secondary metabolites or synthetic analogs, might be useful tolls for drug design for in vivo studies against protozoan diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Asteraceae/chemistry , Benzoquinones/pharmacology , Leishmania/drug effects , Plasmodium falciparum/drug effects , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/toxicity , Benzoquinones/isolation & purification , Benzoquinones/toxicity , Brazil , Cell Line , Cell Survival/drug effects , Chromatography , Inhibitory Concentration 50 , Macaca mulatta , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Leaves/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...