Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38336472

ABSTRACT

BACKGROUND: Respiratory function monitors (RFMs) have been used extensively in manikin and infant studies yet have not become the standard of training. We report the outcomes of a new portable, lightweight RFM, the Juno, designed to show mask leak and deflation tidal volume to assist in positive pressure ventilation (PPV) competency training using manikins. METHODS: Two leak-free manikins (preterm and term) were used. Participants provided PPV to manikins using two randomised devices, self-inflating bag (SIB) and T-piece resuscitator (TPR), with Juno display initially blinded then unblinded in four 90 s paired sequences, aiming for adequate chest wall rise and target minimal mask leak with appropriate target delivered volume when using the monitor. RESULTS: 49 experienced neonatal staff delivered 15 569 inflations to the term manikin and 14 580 inflations to the preterm. Comparing blinded to unblinded RFM display, there were significant reductions in all groups in the number of inflations out of target range volumes (preterm: SIB 22.6-6.6%, TPR 7.1-4.2% and term: SIB 54.8-37.8%, TPR 67.2-63.8%). The percentage of mask leak inflations >60% was reduced in preterm: SIB 20.7-7.2%, TPR 23.4-7.4% and in term: SIB 8.7-3.6%, TPR 23.5-6.2%). CONCLUSIONS: Using the Juno monitor during simulated resuscitation significantly improved mask leak and delivered ventilation among otherwise experienced staff using preterm and term manikins. The Juno is a novel RFM that may assist in teaching and self-assessment of resuscitation PPV technique.

2.
Front Pediatr ; 11: 1173332, 2023.
Article in English | MEDLINE | ID: mdl-37794960

ABSTRACT

Introduction: Assessment of bowel health in ill preterm infants is essential to prevent and diagnose early potentially life-threatening intestinal conditions such as necrotizing enterocolitis. Auscultation of bowel sounds helps assess peristalsis and is an essential component of this assessment. Aim: We aim to compare conventional bowel sound auscultation using acoustic recordings from an electronic stethoscope to real-time bowel motility visualized on point-of-care bowel ultrasound (US) in neonates with no known bowel disease. Methods: This is a prospective observational cohort study in neonates on full enteral feeds with no known bowel disease. A 3M™ Littmann® Model 3200 electronic stethoscope was used to obtain a continuous 60-s recording of bowel sounds at a set region over the abdomen, with a concurrent recording of US using a 12l high-frequency Linear probe. The bowel sounds heard by the first investigator using the stethoscope were contemporaneously transferred for a computerized assessment of their electronic waveforms. The second investigator, blinded to the auscultation findings, obtained bowel US images using a 12l Linear US probe. All recordings were analyzed for bowel peristalsis (duration in seconds) by each of the two methods. Results: We recruited 30 neonates (gestational age range 27-43 weeks) on full enteral feeds with no known bowel disease. The detection of bowel peristalsis (duration in seconds) by both methods (acoustic and US) was reported as a percentage of the total recording time for each participant. Comparing the time segments of bowel sound detection by digital stethoscope recording to that of the visual detection of bowel movements in US revealed a median time of peristalsis with US of 58%, compared to 88.3% with acoustic assessment (p < 0.002). The median regression difference was 26.7% [95% confidence interval (CI) 5%-48%], demonstrating no correlation between the two methods. Conclusion: Our study demonstrates disconcordance between the detection of bowel sounds by auscultation and the detection of bowel motility in real time using US in neonates on full enteral feeds and with no known bowel disease. Better innovative methods using artificial intelligence to characterize bowel sounds, integrating acoustic mapping with sonographic detection of bowel peristalsis, will allow us to develop continuous neonatal bowel sound monitoring devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...