Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Nutr Rep ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789888

ABSTRACT

PURPOSE OF REVIEW: The aim of this systematic review was to investigate the effects of whole grain Avena sativa and Hordeum vulgare L., or their isolated fractions, on immune and inflammatory functions, as well as their influence on gut microbiota. A structured literature search was undertaken in line with PRISMA guidelines. Randomized controlled trials (RCTs) that investigated the effects of oats or barley consumption in adults and reported ≥ 1 of the following: C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), IL-2, IL-8, IL-18, lipopolysacharide binding protein (LBP) or gut microbiota-related outcomes, were included. RECENT FINDINGS: A total of 16 RCTs were included, among which 6 studies recruited metabolically at-risk population, including individuals with overweight and obesity, metabolic syndrome or hypercholesterolemia. Additionally, 3 trials involved young healthy population, 5 trials targeted older individuals (aged over 50 years), and 2 studies encompassed populations with other disease states. A total of 1091 individuals were included in the evaluation of short-term (up to 14 days) and long-term (beyond 14 days, up to 90 days) supplementation with oats or barley-based products. 9 studies measured inflammatory biomarkers and 5 of them reported significant reductions, specifically in long-term studies. Notably, no evidence of anti-inflammatory benefits was found in healthy individuals, whereas studies involving metabolically at-risk populations showed promising reductions in inflammation. 13 studies measured the impact on gut microbiota, and collectively suggest that oats and barley food products can influence the composition of gut microbiota, associated in some cases with metabolic improvements. Oats and barley consumption may confer anti-inflammatory effects in metabolically at-risk populations and influence gut microbiota outcomes. However, no anti-inflammatory benefits were observed in healthy individuals. Results from this systematic review suggests caution in interpreting findings due to limited trials and variations in interventions and health conditions.

2.
J Sci Food Agric ; 101(15): 6496-6504, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34000070

ABSTRACT

BACKGROUND: Barley (Hordeum vulgare L.) is a healthy grain because of its high content of dietary fibre and phenolic compounds. It faces periods of high temperature during grain filling, frequently reducing grain weight. Heat stress may also affect some of the bioactive compounds present in the grain. To produce quality grains that provide nutritional and health benefits, it is important to understand the effect of environmental stresses on the quantity and quality of bioactive compounds. RESULTS: We have studied the effect of post-anthesis thermal stress on barley bioactive compounds and antioxidant capacity under Mediterranean field conditions during two consecutive growing seasons in four barley genotypes. Thermal stress affected grain weight and size and changed the relative composition of bioactive compounds. The relationship between heat stress and grain ß-glucans and arabinoxylans content was indirect, as the resulting increases in concentrations were due to the lower grain weight under stress. Conversely, heat stress had a significant direct impact on some phenolic compounds, increasing their concentrations differentially across genotypes, which contributed to an improvement in antioxidant capacity of up to 30%. CONCLUSION: Post-anthesis thermal stress had a significant effect on ß-glucans, arabinoxylans, phenolic compound concentration and antioxidant capacity of barley grains. Final grain quality could, at least partially, be controlled in order to increase the bioactive concentrations in the barley grain, by cultivation in growing areas prone to heat stress. Late sowings or late flowering genotypes could also be considered, should a premium be implemented to compensate for lower yields. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Antioxidants/metabolism , Hordeum/metabolism , Phytochemicals/metabolism , Seeds/chemistry , beta-Glucans/metabolism , Antioxidants/analysis , Dietary Fiber/analysis , Dietary Fiber/metabolism , Ecosystem , Genotype , Heat-Shock Response , Hordeum/chemistry , Hordeum/genetics , Hordeum/growth & development , Hot Temperature , Phenols/analysis , Phenols/metabolism , Phytochemicals/analysis , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Xylans/analysis , Xylans/metabolism , beta-Glucans/analysis
3.
Foods ; 10(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803221

ABSTRACT

Three food barley genotypes differing in the presence or absence of husks were sequentially pearled and their fractions analyzed for ash, proteins, bioactive compounds and antioxidant capacity in order to identify potential functional food ingredients. Husks were high in ash, arabinoxylans, procyanidin B3, prodelphinidin B4 and p-coumaric, ferulic and diferulic bound acids, resulting in a high antioxidant capacity. The outermost layers provided a similar content of those bioactive compounds and antioxidant capacity that were high in husks, and also an elevated content of tocols, representing the most valuable source of bioactive compounds. Intermediate layers provided high protein content, ß-glucans, tocopherols and such phenolic compounds as catechins and bound hydroxybenzoic acid. The endosperm had very high ß-glucan content and relative high levels of catechins and hydroxybenzoic acid. Based on the spatial distribution of the bioactive compounds, the outermost 30% pearling fractions seem the best option to exploit the antioxidant capacity of barley to the full, whereas pearled grains supply ß-glucans enriched flours. Current regulations require elimination of inedible husks from human foods. However, due to their high content in bioactive compounds and antioxidant capacity, they should be considered as a valuable material, at least for animal feeds.

4.
Plants (Basel) ; 10(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810185

ABSTRACT

High temperatures at the end of the season are frequent under Mediterranean conditions, affecting final grain quality. This study determined the deposition patterns throughout grain filling of dry matter, dietary fiber, phenolic compounds and antioxidant capacity for four barley genotypes under two contrasting temperatures. Deposition pattern for dietary fiber followed that of grain weight. Genotypic differences for duration were more significant than for rate. Anthocyanins followed a second-degree polynomial pattern, reaching a maximum before grain maturation. Free and bound phenols decreased as grain developed, suggesting that they are synthesized in early stages. Rate of bound phenols deposition was more sensitive to genotypic changes. Overall, antioxidant capacity decreased over time; the decay being less steep under stress for all genotypes. Heat stress negatively affected grain weight. It did not alter the profile of ß-glucans and arabinoxylans deposition but positively changed the accumulation of some phenolic compounds, increasing the antioxidant capacity differentially across genotypes. These results support the growing of food barley in high-temperature stress-prone areas, as some bioactive compound and antioxidant capacity will increase, regardless of the smaller grain size. Moreover, if a market develops for food-barley ingredients, early harvesting of non-mature grain to maximize antioxidant capacity should be considered.

5.
Plant Sci ; 239: 15-25, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26398787

ABSTRACT

The mechanisms of stomatal sensitivity to CO2 are yet to be fully understood. The role of photosynthetic and non-photosynthetic factors in stomatal responses to CO2 was investigated in wild-type barley (Hordeum vulgare var. Graphic) and in a mutant (G132) with decreased photochemical and Rubisco capacities. The CO2 and DCMU responses of stomatal conductance (gs), gas exchange, chlorophyll fluorescence and levels of ATP, with a putative transcript for stomatal opening were analysed. G132 had greater gs than the wild-type, despite lower photosynthesis rates and higher intercellular CO2 concentrations (Ci). The mutant had Rubisco-limited photosynthesis at very high CO2 levels, and higher ATP contents than the wild-type. Stomatal sensitivity to CO2 under red light was lower in G132 than in the wild-type, both in photosynthesizing and DCMU-inhibited leaves. Under constant Ci and red light, stomatal sensitivity to DCMU inhibition was higher in G132. The levels of a SLAH3-like slow anion channel transcript, involved in stomatal closure, decreased sharply in G132. The results suggest that stomatal responses to CO2 depend partly on the balance of photosynthetic electron transport to carbon assimilation capacities, but are partially regulated by the CO2 signalling network. High gs can improve the adaptation to climate change in well-watered conditions.


Subject(s)
Carbon Dioxide/metabolism , Gene Expression Regulation, Plant , Hordeum/genetics , Plant Proteins/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Voltage-Dependent Anion Channels/genetics , Electron Transport , Hordeum/metabolism , Light , Mutation , Photosynthesis , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Stomata/metabolism , Voltage-Dependent Anion Channels/metabolism
6.
PLoS One ; 9(6): e99229, 2014.
Article in English | MEDLINE | ID: mdl-24910993

ABSTRACT

Bt crops are able to produce Cry proteins, which were originally present in Bacillus thuringiensis bacteria. Although Bt maize is very efficient against corn borers, Spanish crops are also attacked by the earworm H. armigera, which is less susceptible to Bt maize. Many mechanisms could be involved in this low susceptibility to the toxin, including the insect's metabolic resistance to toxins due to cytochrome P450 monooxygenases. This paper examines the response of last instar H. armigera larvae to feeding on a diet with Bt and non-Bt maize leaves in larval development and in the gene expression of three P450 cytochromes: CYP6AE14, CYP6B2 and CYP9A12. Larvae fed on sublethal amounts of the Bt toxin showed reduced food ingestion and reduced growth and weight, preventing most of them from achieving the critical weight and pupating; additionally, after feeding for one day on the Bt diet the larvae showed a slight increase in juvenile hormone II in the hemolymp. Larvae fed on the non-Bt diet showed the highest CYP6AE14, CYP6B2 and CYP9A12 expression one day after feeding on the non-Bt diet, and just two days later the expression decreased abruptly, a finding probably related to the developmental programme of the last instar. Moreover, although the response of P450 genes to plant allelochemicals and xenobiotics has been related in general to overexpression in the resistant insect, or induction of the genes when feeding takes place, the expression of the three genes studied was suppressed in the larvae feeding on the Bt toxin. The unexpected inhibitory effect of the Cry1Ab toxin in the P450 genes of H. armigera larvae should be thoroughly studied to determine whether this response is somehow related to the low susceptibility of the species to the Bt toxin.


Subject(s)
Animal Feed/adverse effects , Cytochrome P-450 Enzyme System/genetics , Insecticides/toxicity , Moths/drug effects , Moths/genetics , Toxins, Biological/toxicity , Zea mays/chemistry , Animals , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Juvenile Hormones/metabolism , Larva , Moths/embryology , Sesquiterpenes/metabolism
7.
Theor Appl Genet ; 122(8): 1605-16, 2011 May.
Article in English | MEDLINE | ID: mdl-21373796

ABSTRACT

Quantitative trait locus (QTL) detection is commonly performed by analysis of designed segregating populations derived from two inbred parental lines, where absence of selection, mutation and genetic drift is assumed. Even for designed populations, selection cannot always be avoided, with as consequence varying correlation between genotypes instead of uniform correlation. Akin to linkage disequilibrium mapping, ignoring this type of genetic relatedness will increase the rate of false-positives. In this paper, we advocate using mixed models including genetic relatedness, or 'kinship' information for QTL detection in populations where selection forces operated. We demonstrate our case with a three-way barley cross, designed to segregate for dwarfing, vernalization and spike morphology genes, in which selection occurred. The population of 161 inbred lines was screened with 1,536 single nucleotide polymorphisms (SNPs), and used for gene and QTL detection. The coefficient of coancestry matrix was estimated based on the SNPs and imposed to structure the distribution of random genotypic effects. The model incorporating kinship, coancestry, information was consistently superior to the one without kinship (according to the Akaike information criterion). We show, for three traits, that ignoring the coancestry information results in an unrealistically high number of marker-trait associations, without providing clear conclusions about QTL locations. We used a number of widely recognized dwarfing and vernalization genes known to segregate in the studied population as landmarks or references to assess the agreement of the mapping results with a priori candidate gene expectations. Additional QTLs to the major genes were detected for all traits as well.


Subject(s)
Genes, Plant/genetics , Hordeum/genetics , Phenotype , Quantitative Trait Loci/genetics , Selection, Genetic , Crosses, Genetic , Genotype , Hordeum/anatomy & histology , Hordeum/growth & development , Models, Statistical , Polymorphism, Single Nucleotide/genetics
8.
Transgenic Res ; 16(3): 261-80, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17436060

ABSTRACT

Selectable marker gene systems are vital for the development of transgenic crops. Since the creation of the first transgenic plants in the early 1980s and their subsequent commercialization worldwide over almost an entire decade, antibiotic and herbicide resistance selectable marker gene systems have been an integral feature of plant genetic modification. Without them, creating transgenic crops is not feasible on purely economic and practical terms. These systems allow the relatively straightforward identification and selection of plants that have stably incorporated not only the marker genes but also genes of interest, for example herbicide tolerance and pest resistance. Bacterial antibiotic resistance genes are also crucial in molecular biology manipulations in the laboratory. An unprecedented debate has accompanied the development and commercialization of transgenic crops. Divergent policies and their implementation in the European Union on one hand and the rest of the world on the other (industrialized and developing countries alike), have resulted in disputes with serious consequences on agricultural policy, world trade and food security. A lot of research effort has been directed towards the development of marker-free transformation or systems to remove selectable markers. Such research has been in a large part motivated by perceived problems with antibiotic resistance selectable markers; however, it is not justified from a safety point of view. The aim of this review is to discuss in some detail the currently available scientific evidence that overwhelmingly argues for the safety of these marker gene systems. Our conclusion, supported by numerous studies, most of which are commissioned by some of the very parties that have taken a position against the use of antibiotic selectable marker gene systems, is that there is no scientific basis to argue against the use and presence of selectable marker genes as a class in transgenic plants.


Subject(s)
Crops, Agricultural/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/toxicity , Politics , Animal Feed , Animals , Crops, Agricultural/toxicity , DNA, Recombinant/metabolism , Genetic Markers , Humans , Recombinant Proteins/metabolism , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...