Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 633762, 2021.
Article in English | MEDLINE | ID: mdl-33841414

ABSTRACT

Though viruses have their own genomes, many depend on the nuclear environment of their hosts for replication and survival. A substantial body of work has therefore been devoted to understanding how viral and eukaryotic genomes interact. Recent advances in chromosome conformation capture technologies have provided unprecedented opportunities to visualize how mammalian genomes are organized and, by extension, how packaging of nuclear DNA impacts cellular processes. Recent studies have indicated that some viruses, upon entry into host cell nuclei, produce factors that alter host chromatin topology, and thus, impact the 3D organization of the host genome. Additionally, a variety of distinct viruses utilize host genome architectural factors to advance various aspects of their life cycles. Indeed, human gammaherpesviruses, known for establishing long-term reservoirs of latent infection in B lymphocytes, utilize 3D principles of genome folding to package their DNA and establish latency in host cells. This manipulation of host epigenetic machinery by latent viral genomes is etiologically linked to the onset of B cell oncogenesis. Small DNA viruses, by contrast, are tethered to distinct cellular sites that support virus expression and replication. Here, we briefly review the recent findings on how viruses and host genomes spatially communicate, and how this impacts virus-induced pathology.


Subject(s)
Chromosomes, Human , DNA, Viral/genetics , Gammaherpesvirinae/genetics , Genome, Viral , Herpesviridae Infections/virology , Tumor Virus Infections/virology , Virus Integration , Animals , Cell Transformation, Viral , Epigenesis, Genetic , Gammaherpesvirinae/pathogenicity , Gene Expression Regulation, Viral , Herpesviridae Infections/genetics , Host-Pathogen Interactions , Humans , Nucleic Acid Conformation , Tumor Virus Infections/genetics , Virus Internalization , Virus Latency , Virus Replication
2.
Cell Cycle ; 19(1): 67-83, 2020 01.
Article in English | MEDLINE | ID: mdl-31757180

ABSTRACT

DNA damage can be generated in multiple ways from genotoxic and physiologic sources. Genotoxic damage is known to disrupt cellular functions and is lethal if not repaired properly. We compare the transcriptional programs activated in response to genotoxic DNA damage induced by ionizing radiation (IR) in abl pre-B cells from mice deficient in DNA damage response (DDR) genes Atm, Mre11, Mdc1, H2ax, 53bp1, and DNA-PKcs. We identified a core IR-specific transcriptional response that occurs in abl pre-B cells from WT mice and compared the response of the other genotypes to the WT response. We also identified genotype specific responses and compared those to each other. The WT response includes many processes involved in lymphocyte development and immune response, as well as responses associated with the molecular mechanisms of cancer, such as TP53 signaling. As expected, there is a range of similarity in transcriptional profiles in comparison to WT cells, with Atm-/- cells being the most different from the core WT DDR and Mre11 hypomorph (Mre11A/A) cells also very dissimilar to WT and other genotypes. For example, NF-kB-related signaling and CD40 signaling are deficient in both Atm-/- and Mre11A/A cells, but present in all other genotypes. In contrast, IR-induced TP53 signaling is seen in the Mre11A/A cells, while these responses are not seen in the Atm-/- cells. By examining the similarities and differences in the signaling pathways in response to IR when specific genes are absent, our results further illustrate the contribution of each gene to the DDR. The microarray gene expression data discussed in this paper have been deposited in NCBI's Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) and are accessible under accession number GSE116388.


Subject(s)
DNA Damage/genetics , Precursor Cells, B-Lymphoid/metabolism , Animals , Cell Cycle/genetics , Cell Cycle/radiation effects , Cell Cycle Checkpoints/genetics , Gene Expression Regulation/radiation effects , Genotype , Mice , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/radiation effects , Radiation, Ionizing , Signal Transduction , Transcription, Genetic/radiation effects
3.
Front Immunol ; 10: 2906, 2019.
Article in English | MEDLINE | ID: mdl-31921166

ABSTRACT

A diverse student body enriches the classroom with lived experiences, varied skillsets, community and cultural knowledge, resiliency, and altruistic interests, all critical attributes that benefit both the classroom and the STEM field at large. However, a persistent disparity in academic and educational attainment exists between under-represented minority (URM) and non-URM students in STEM fields. This achievement gap discourages talented URM students from entering STEM professions, threatening the potential, expertise, and perspective of these professions. Here we describe the factors that contribute to the achievement gap and present strategies, utilized in our Immunology classrooms, for combating each factor. We discuss project-based learning pedagogy to give students increased agency and feelings of empowerment. We also highlight concrete practices to foster students' science identities and sense of community, factors that highly promote STEM retention. The dynamic subject of Immunology provides myriad opportunities to implement a curriculum committed to equity, as we outline below.


Subject(s)
Allergy and Immunology/education , Education, Medical, Undergraduate , Minority Groups , Social Conditions , Female , Humans , Male
4.
SLAS Discov ; 23(7): 624-633, 2018 08.
Article in English | MEDLINE | ID: mdl-29232168

ABSTRACT

DNA double-strand breaks (DSBs) are repaired primarily by homologous recombination (HR) or nonhomologous end joining (NHEJ). Compounds that modulate HR have shown promise as cancer therapeutics. The V(D)J recombination reaction, which assembles antigen receptor genes in lymphocytes, is initiated by the introduction of DNA DSBs at two recombining gene segments by the RAG endonuclease, followed by the NHEJ-mediated repair of these DSBs. Here, using HyperCyt automated flow cytometry, we develop a robust high-throughput screening (HTS) assay for NHEJ that utilizes engineered pre-B-cell lines where the V(D)J recombination reaction can be induced and monitored at a single-cell level. This approach, novel in processing four 384-well plates at a time in parallel, was used to screen the National Cancer Institute NeXT library to identify compounds that inhibit V(D)J recombination and NHEJ. Assessment of cell light scattering characteristics at the primary HTS stage (83,536 compounds) enabled elimination of 60% of apparent hits as false positives. Although all the active compounds that we identified had an inhibitory effect on RAG cleavage, we have established this as an approach that could identify compounds that inhibit RAG cleavage or NHEJ using new chemical libraries.


Subject(s)
DNA End-Joining Repair/drug effects , Drug Discovery , High-Throughput Screening Assays , DNA Breaks, Double-Stranded/drug effects , Dose-Response Relationship, Drug , Drug Discovery/methods , Flow Cytometry , Homologous Recombination , Humans , Molecular Structure , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/metabolism , V(D)J Recombination
5.
Elife ; 62017 03 31.
Article in English | MEDLINE | ID: mdl-28362262

ABSTRACT

Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1ß and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR.


Subject(s)
Gene Expression Regulation , Immunity, Innate , Inflammasomes/metabolism , Interferon Type I/metabolism , Listeria monocytogenes/immunology , Macrophages/immunology , Animals , DNA Breaks, Double-Stranded , DNA Damage , Mice , Protein Kinases/metabolism
6.
Cell Cycle ; 16(3): 286-295, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27830975

ABSTRACT

Non-homologous end joining (NHEJ) is a major DNA double-strand break (DSB) repair pathway that functions in all phases of the cell cycle. NHEJ repairs genotoxic and physiological DSBs, such as those generated by ionizing radiation and during V(D)J recombination at antigen receptor loci, respectively. DNA end joining by NHEJ relies on the core factors Ku70, Ku80, XRCC4, and DNA Ligase IV. Additional proteins also play important roles in NHEJ. The XRCC4-like factor (XLF) participates in NHEJ through its interaction with XRCC4, and XLF deficiency in humans leads to immunodeficiency and increased sensitivity to ionizing radiation. However, XLF is dispensable for NHEJ-mediated DSB repair during V(D)J recombination in murine lymphocytes, where it may have redundant functions with other DSB repair factors. Paralog of XRCC4 and XLF (PAXX) is a recently identified NHEJ factor that has structural similarity to XRCC4 and XLF. Here we show that PAXX is also dispensable for NHEJ during V(D)J recombination and during the repair of genotoxic DSBs in lymphocytes. However, a combined deficiency of PAXX and XLF blocks NHEJ with a severity comparable to that observed in DNA Ligase IV-deficient cells. Similar to XLF, PAXX interacts with Ku through its C-terminal region, and mutations that disrupt Ku binding prevent PAXX from promoting NHEJ in XLF-deficient lymphocytes. Our findings suggest that the PAXX and XLF proteins may have redundant functions during NHEJ.


Subject(s)
B-Lymphocytes/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Binding Proteins/deficiency , Animals , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Mutant Proteins/metabolism , Protein Domains , V(D)J Recombination
SELECTION OF CITATIONS
SEARCH DETAIL
...