Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Pharm ; 632: 122574, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36603670

ABSTRACT

3D printed LEGO®-like designs are an attractive approach for the development of compartmental delivery systems due to their potential for dose personalisation through the customisation of drug release profiles. Additive manufacturing technologies such as Fused Deposition Modelling (FDM) are ideal for the printing of structures with complex geometries and various sizes. This study is a paradigm for the fabrication of 3D printed LEGO® -like tablets by altering the design of the modular units and the filament composition for the delivery of different drug substances. By using a combination of placebo and drug loaded compartments comprising of immediate release (hydroxypropyl cellulose) and pH dependant polymers (hypromellose acetate succinate) we were able to customise the release kinetics of melatonin and caffeine that can potentially be used for the treatment of sleep disorders. The LEGO® -like compartments were designed to achieve immediate release of melatonin followed by variable lag times and controlled release of caffeine.


Subject(s)
Melatonin , Sleep Wake Disorders , Humans , Caffeine/chemistry , Printing, Three-Dimensional , Tablets/chemistry , Drug Liberation , Technology, Pharmaceutical
2.
Pharmaceutics ; 13(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34452262

ABSTRACT

The development of personalised paediatric dosage forms using 3D printing technologies has gained significant interest over the last few years. In the current study extruded filaments of the highly bitter Diphenhydramine Hydrochloride (DPH) were fabricated by using suitable hydrophilic carries such as hydroxypropyl cellulose (Klucel ELFTM) and a non-ionic surfactant (Gelucire 48/16TM) combined with sweetener (Sucralose) and strawberry flavour grades. The thermoplastic filaments were used to print 3D fruit-chew designs by Fused Deposition Modelling (FDM) technology. Physicochemical characterisation confirmed the formation of glass solution where DPH was molecularly dispersed within the hydrophilic carriers. DPH was released rapidly from the 3D printed fruit-chew designs with >85% within the first 30 min. Trained panellists performed a full taste and sensory evaluation of the sweetener intensity and the strawberry aroma. The evaluation showed complete taste masking of the bitter DPH and revealed a synergistic effect of the sweetener and the strawberry flavour with enhanced sweet strawberry, fruity and aftertaste perception. The findings of the study can be used for the development of paediatric dosage forms with enhanced organoleptic properties, palatability and medication adherence.

SELECTION OF CITATIONS
SEARCH DETAIL