Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 1(3): 1077-1085, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-36133192

ABSTRACT

BioFETs based on two-dimensional materials (2DMs) offer a unique opportunity to enhance, at a low cost, the sensitivity of current biosensors enabling the design of compact devices compatible with standard CMOS technology. The unique combination of large exposed surface areas and minimal thicknesses of 2DMs is an outstanding feature for these devices, and the assessment of their behaviour requires combined experimental and theoretical efforts. In this work we present a 2D-material based BioFET simulator including complex electrolyte reactions and analysing different models for the electrolyte-molecule interaction. These models describe how the molecular charge is screened by the electrolyte ions when their distributions are modified. The electrolyte simulation is validated against experimental results as well as against the analytical predictions of the Debye-Hückel approximation. The role of the electrolyte charge screening as well as the impact of the interaction model on the device responsivity are analysed in detail. The results are discussed in order to conclude about the consequences of employing different interaction approximations for the simulation of BioFETs and more generally on the correct modelling of biomolecule-device interaction in BioFETs.

3.
ScientificWorldJournal ; 2015: 752969, 2015.
Article in English | MEDLINE | ID: mdl-25861681

ABSTRACT

HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time.

4.
Med Eng Phys ; 35(7): 1005-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23089209

ABSTRACT

This paper illustrates the use of a reconfigurable system for fetal electrocardiogram (FECG) estimation from mother's abdomen ECG measurements. The system is based on two different reconfigurable devices. Initially, a field-programmable analog array (FPAA) device implements the analog reconfigurable preprocessing for ECG signal acquisition. The signal processing chain continues onto a field-programmable gate array (FPGA) device, which contains all the communication and interfacing protocols along with specific digital signal processing blocks required for fundamental period extraction from FECG waveforms. The synergy between these devices provides the system the ability to change any necessary parameter during the acquisition process for enhancing the result. The use of a FPGA allows implementing different algorithms for FECG signal extraction, such as adaptive signal filtering. Preliminary works employ commercially available development platforms for test experiments, which suffice for the processing of real FECG signals from biomedical databases, as the presented results illustrate.


Subject(s)
Electrocardiography , Fetus/physiology , Heart Rate , Mothers , Signal Processing, Computer-Assisted , Algorithms , Databases, Factual , Female , Humans , Pregnancy
5.
Phys Med Biol ; 56(12): 3535-50, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21606552

ABSTRACT

New thermal compensation methods suitable for p-channel MOSFET (pMOS) dosimeters with the usual dose readout procedure based on a constant drain current are presented. Measuring the source-drain voltage shifts for two or three different drain currents and knowing the value of the zero-temperature coefficient drain current, I(ZTC), the thermal drift of source-drain or threshold voltages can be significantly reduced. Analytical expressions for the thermal compensation have been theoretically deduced on the basis of a linear dependence on temperature of the parameters involved. The proposed thermal modelling has been experimentally proven. These methods have been applied to a group of ten commercial pMOS transistors (3N163). The thermal coefficients of the source-drain voltage and the threshold voltage were reduced from -3.0 mV °C(-1), in the worst case, down to -70 µV °C(-1). This means a thermal drift of -2.4 mGy °C(-1) for the dosimeter. When analysing the thermal drifts of all the studied transistors, in the temperature range from 19 to 36 °C, uncertainty was obtained in the threshold voltage due to a thermal drift of ±9 mGy (2 SD), a commonly acceptable value in most radiotherapy treatments. The procedures described herein provide thermal drift reduction comparable to that of other technological or numerical strategies, but can be used in a very simple and low-cost dosimetry sensor.


Subject(s)
Electric Conductivity , Metals/chemistry , Oxides/chemistry , Radiometry/instrumentation , Temperature , Transistors, Electronic , Artifacts , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...