Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731562

ABSTRACT

Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 µM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 µM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.


Subject(s)
Antiprotozoal Agents , Boron Compounds , Leishmania major , Molecular Docking Simulation , Trypanosoma brucei brucei , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Trypanosoma brucei brucei/drug effects , Humans , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Leishmania major/drug effects , Drug Design , Structure-Activity Relationship , Cell Line , Molecular Structure , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Oxidoreductases
2.
Cell Rep ; 43(4): 114091, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607914

ABSTRACT

Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.


Subject(s)
Arabidopsis Proteins , Basic-Leucine Zipper Transcription Factors , Fatty Acids , Peroxiredoxins , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Lipid Metabolism , Nitric Oxide/metabolism , Peroxiredoxins/metabolism , Protein Processing, Post-Translational , Seeds/metabolism
3.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38397799

ABSTRACT

Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.

4.
Int J Antimicrob Agents ; 63(3): 107092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242251

ABSTRACT

OBJECTIVES: New drugs are required to treat neglected diseases caused by trypanosomatid parasites such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi. An Achilles' heel of these parasites is their heme auxotrophy; they have an absolute dependence on scavenging this molecule from the host, and trypanosomatid HRG heme transporters (TrypHRG) play an important role in this process. As these proteins are essential for the parasites and have low similarity with their human orthologue, they have been proposed as attractive therapeutic targets. Here, we have developed two yeast-based assays that allow an inexpensive high-throughput screening of TrypHRG inhibitors within a cellular context. METHODS: We first assessed that Leishmania major, Leishmania donovani and T. brucei HRG proteins were heterologously expressed in the digestive vacuole membrane of a mutant heme auxotrophic yeast strain. Here, TrypHRG imports hemoglobinderived heme into the cytosol, allowing mutant yeast to grow in the presence of low hemoglobin concentrations and promoting the activity of hemeproteins such as catalase, which was used as a reporter of cytosolic heme levels. RESULTS: In the presence of a TrypHRG inhibitor, both catalase activity (test 1) and yeast growth (test 2) were diminished, being easily monitored. The assays were then tested on a pilot scale for HTS purposes using a collection of repurposing drugs and food antioxidants. Some of the TrypHRG inhibitors identified in yeast presented strong trypanocidal and leishmanicidal activity in the submicromolar range, proving the potential of this approach. CONCLUSIONS: Cumulatively, it was shown that the inhibition bioassays developed were robust and applicable to large-scale HTS.


Subject(s)
Leishmania , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Catalase , Biological Assay , Heme
5.
Molecules ; 28(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38067459

ABSTRACT

Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized with different (hetero)aromatic moieties. We synthesized substituted BIM derivatives with triphenylamine, N,N-dimethyl-1-naphthylamine and 8-hydroxylquinolyl groups, studied their photophysical properties and evaluated their in vitro antiproliferative and antiparasitic activities. The triphenylamine BIM derivative 2a displayed an IC50 of 3.21, 3.30 and 3.93 µM against Trypanosoma brucei, Leishmania major and HT-29 cancer cell line, respectively. The selectivity index demonstrated that compound 2a was up to eight-fold more active against the parasites and HT-29 than against the healthy cell line MRC-5. Fluorescence microscopy studies with MRC-5 cells and T. brucei parasites incubated with derivative 2a indicate that the compound seems to accumulate in the cell's mitochondria and in the parasite's nucleus. In conclusion, the BIM scaffold functionalized with the triphenylamine moiety proved to be the most promising antiparasitic and anticancer agent of this series.


Subject(s)
Antineoplastic Agents , Neoplasms , Trypanosoma brucei brucei , Humans , Antiparasitic Agents/pharmacology , Methane , Antineoplastic Agents/pharmacology , Structure-Activity Relationship
6.
J Therm Biol ; 114: 103539, 2023 May.
Article in English | MEDLINE | ID: mdl-37344013

ABSTRACT

In ectothermic animals, body temperature is the most important factor affecting physiology and behavior. Reptiles depend on environmental temperature to regulate their body temperature, so geographic variation in environmental temperature can affect the biology of these organisms in the short and long term. We may expect physiological and behavioral responses to temperature change to be especially important in ectotherms inhabiting temperate zones, where different seasons present different thermal challenges. High-mountain temperate systems represent a natural laboratory for studies of evolutionary and plastic variation in thermal biology. The aim of the present study is to evaluate operative temperature with biophysical models, active body temperature under field conditions, preferred temperature in a thermal gradient in the laboratory, and thermal indexes in Sceloporus grammicus lizards along an elevational gradient. We measured these traits in three populations at 2500, 3400, and 4100 m elevation at different seasons of the year (spring, summer and autumn). Our results showed that operative temperature varied with season and elevation, with greater variation at middle and high elevations than at low elevations. Body temperature and preferred temperature varied with altitude and season but did not differ between sexes. Thermal quality was lowest in the high-altitude population and in the summer season. Thermoregulatory efficiency was highest in the three populations in the autumn. Our results suggest that thermoregulatory strategies vary with elevation and season, allowing individual lizards to confront annual fluctuations in the thermal environment and conflicting with some previous descriptions of Sceloporus lizards as thermally conservative.


Subject(s)
Lizards , Prosopis , Animals , Lizards/physiology , Seasons , Altitude , Body Temperature Regulation
7.
Article in English | MEDLINE | ID: mdl-37059292

ABSTRACT

High altitude environments provide a fertile ground for investigating the benefits of phenotypic adjustments at several levels of biological organization. Low oxygen partial pressure and low environmental temperature are the main limiting factors that promote phenotypic variation in different organs, such as the lung and heart. Although high-altitude environments act like natural laboratories, most morphological studies conducted to date lack replication. Here, we evaluated organ mass variation in nine populations of Sceloporus grammicus, throughout three altitudinal gradients (mountains) from the Trans-Mexican volcanic belt. A total of 84 individuals from three different altitudes at three different mountains were collected. Then, we used generalized linear models to analyze the pattern of variation in internal organs mass as a function of altitude and temperature. We observed a striking pattern of altitudinal variation in the size of cardiorespiratory organs: while heart mass increased with altitude and decreased with temperature, the lung showed a significant statistical interaction between mountain transect and temperature. Overall, our results support the hypothesis that cardiorespiratory organs should be bigger in populations occurring at higher altitudes. Moreover, the study of different mountain systems allowed us to observe some differences in one mountain in relation to the other two.


Subject(s)
Lizards , Prosopis , Humans , Animals , Altitude , Temperature , Cold Temperature
8.
Article in English | MEDLINE | ID: mdl-36336309

ABSTRACT

Ecogeographical patterns describe predictable variation in phenotypic traits between ecological communities. For example, high-altitude animals are expected to show elevated hematological values as an adaptation to the lower oxygen pressure. Mountains act like ecological islands and therefore are considered natural laboratories. However, the majority of ecophysiological studies on blood traits lack replication that would allow us to infer if the pattern reported is a local event or whether it is a widespread pattern resulting from larger-scale ecological processes. In lizards, in fact, the increase of hematological values at high altitudes has received mixed support. Here, for the first time, we compare blood traits in lizards along elevational gradients with replication. We tested the repeatability of blood traits in mesquite lizards between different elevations in three different mountains from the Trans-Mexican Volcanic Belt. We measured hematocrit, hemoglobin concentration, mean corpuscular hemoglobin concentration, and erythrocyte size in blood samples of low, medium, and high-elevation lizards. We obtained similar elevational patterns between mountains, but the blood traits differed among mountains. Middle-altitude populations had greater oxygen-carrying capacity than lizards from low and high altitudes. The differences found between mountain systems could be the result of phenotypic plasticity or genetic differentiation as a consequence of abiotic factors not considered.


Subject(s)
Lizards , Prosopis , Animals , Lizards/physiology , Altitude , Hematocrit , Oxygen
9.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36290592

ABSTRACT

The non-enzymatic interaction of polyunsaturated fatty acids with nitric oxide (NO) and derived species results in the formation of nitrated fatty acids (NO2-FAs). These signaling molecules can release NO, reversibly esterify with complex lipids, and modulate protein function through the post-translational modification called nitroalkylation. To date, NO2-FAs act as signaling molecules during plant development in plant systems and are involved in defense responses against abiotic stress conditions. In this work, the previously unknown storage biomolecules of NO2-FAs in Arabidopsis thaliana were identified. In addition, the distribution of NO2-FAs in storage biomolecules during plant development was determined, with phytosterol esters (SE) and TAGs being reservoir biomolecules in seeds, which were replaced by phospholipids and proteins in the vegetative, generative, and senescence stages. The detected esterified NO2-FAs were nitro-linolenic acid (NO2-Ln), nitro-oleic acid (NO2-OA), and nitro-linoleic acid (NO2-LA). The last two were detected for the first time in Arabidopsis. The levels of the three NO2-FAs that were esterified in both lipid and protein storage biomolecules showed a decreasing pattern throughout Arabidopsis development. Esterification of NO2-FAs in phospholipids and proteins highlights their involvement in both biomembrane dynamics and signaling processes, respectively, during Arabidopsis plant development.

10.
Bioorg Med Chem ; 71: 116946, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35939903

ABSTRACT

Naphthalene diimide (NDI) is a central scaffold that has been commonly used in the design of G-quadruplex (G4) ligands. Previous work revealed notable anticancer activity of a disubstituted N-methylpiperazine propyl NDI G4 ligand. Here, we explored structure-activity relationship studies around ligand bis-N,N-2,7-(3-(4-methylpiperazin-1-yl)propyl)-1,4,5,8-naphthalenetetracarboxylic diimide, maintaining the central NDI core whilst modifying the spacer and the nature of the cationic groups. We prepared new disubstituted NDI derivatives of the original compound and examined their in vitro antiproliferative and antiparasitic activity. Several N-methylpiperazine propyl NDIs showed sub-micromolar activity against Trypanosoma brucei and Leishmania major parasites with up to 30 fold selectivity versus MRC-5 cells. The best compound was a dimorpholino NDI with an IC50 of 0.17 µM against T.brucei and 40 fold selectivity versus MRC-5 cells. However, no clear correlation between G4 binding of the new NDI derivatives and antiproliferative or antiparasitic activity was observed, indicating that other mechanisms of action may be responsible for the observed biological activity.


Subject(s)
Antiparasitic Agents , G-Quadruplexes , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Imides/chemistry , Imides/pharmacology , Ligands , Naphthalenes , Structure-Activity Relationship
11.
Antioxidants (Basel) ; 11(5)2022 May 14.
Article in English | MEDLINE | ID: mdl-35624836

ABSTRACT

Heat stress is one of the abiotic stresses that leads to oxidative stress. To protect themselves, yeast cells activate the antioxidant response, in which cytosolic peroxiredoxin Tsa1 plays an important role in hydrogen peroxide removal. Concomitantly, the activation of the heat shock response (HSR) is also triggered. Nitro-fatty acids are signaling molecules generated by the interaction of reactive nitrogen species with unsaturated fatty acids. These molecules have been detected in animals and plants. They exert their signaling function mainly through a post-translational modification called nitroalkylation. In addition, these molecules are closely related to the induction of the HSR. In this work, the endogenous presence of nitro-oleic acid (NO2-OA) in Saccharomyces cerevisiae is identified for the first time by LC-MS/MS. Both hydrogen peroxide levels and Tsa1 activity increased after heat stress with no change in protein content. The nitroalkylation of recombinant Tsa1 with NO2-OA was also observed. It is important to point out that cysteine 47 (peroxidatic) and cysteine 171 (resolving) are the main residues responsible for protein activity. Moreover, the in vivo nitroalkylation of Tsa1 peroxidatic cysteine disappeared during heat stress as the hydrogen peroxide generated in this situation caused the rupture of the NO2-OA binding to the protein and, thus, restored Tsa1 activity. Finally, the amino acid targets susceptible to nitroalkylation and the modulatory effect of this PTM on the enzymatic activity of Tsa1 are also shown in vitro and in vivo. This mechanism of response was faster than that involving the induction of genes and the synthesis of new proteins and could be considered as a key element in the fine-tuning regulation of defence mechanisms against oxidative stress in yeast.

13.
Chemistry ; 27(28): 7712-7721, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33780044

ABSTRACT

A facile imide coupling strategy for the one-step preparation of G-quadruplex ligands with varied core chemistries is described. The G-quadruplex stabilization of a library of nine compounds was examined using FRET melting experiments, and CD, UV-Vis, fluorescence and NMR titrations, identifying several compounds that were capable of stabilizing G-quadruplex DNA with interesting selectivity profiles. The best G4 ligand was identified as compound 3, which was based on a perylene scaffold and exhibited 40-fold selectivity for a telomeric G-quadruplex over duplex DNA. Surprisingly, a tetra-substituted flexible core, compound 11, also exhibited selective stabilization of G4 DNA over duplex DNA. The anticancer and antiparasitic activity of the library was also examined, with the lead compound 3 exhibiting nanomolar inhibition of Trypanosoma brucei with 78-fold selectivity over MRC5 cells. The cellular localization of this compound was also studied via fluorescence microscopy. We found that uptake was time dependant, with localization outside the nucleus and kinetoplast that could be due to strong fluorescence quenching in the presence of small amounts of DNA.


Subject(s)
G-Quadruplexes , Antiparasitic Agents/pharmacology , Imides , Ligands , Telomere
14.
J Exp Bot ; 72(3): 917-927, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33161434

ABSTRACT

Nitro-fatty acids are generated from the interaction of unsaturated fatty acids and nitric oxide (NO)-derived molecules. The endogenous occurrence and modulation throughout plant development of nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) suggest a key role for these molecules in initial development stages. In addition, NO2-Ln content increases significantly in stress situations and induces the expression of genes mainly related to abiotic stress, such as genes encoding members of the heat shock response family and antioxidant enzymes. The promoter regions of NO2-Ln-induced genes are also involved mainly in stress responses. These findings confirm that NO2-Ln is involved in plant defense processes against abiotic stress conditions via induction of the chaperone network and antioxidant systems. NO2-Ln signaling capacity lies mainly in its electrophilic nature and allows it to mediate a reversible post-translational modification called nitroalkylation, which is capable of modulating protein function. NO2-Ln is a NO donor that may be involved in NO signaling events and is able to generate S-nitrosoglutathione, the major reservoir of NO in cells and a key player in NO-mediated abiotic stress responses. This review describes the current state of the art regarding the essential role of nitro-fatty acids as signaling mediators in development and abiotic stress processes.


Subject(s)
Fatty Acids , Nitrates , Nitric Oxide , Plants , Stress, Physiological
15.
Front Neural Circuits ; 14: 36, 2020.
Article in English | MEDLINE | ID: mdl-32655378

ABSTRACT

Striatal interneurons and spiny projection (SP) neurons are differentially tuned to spectral components of their input. Previous studies showed that spike responses of somatostatin/NPY-expressing low threshold spike (LTS) interneurons have broad frequency tuning, setting these cells apart from other striatal GABAergic interneurons and SP neurons. We investigated the mechanism of LTS interneuron spiking resonance and its relationship to non-spiking membrane impedance resonance, finding that abolition of impedance resonance did not alter spiking resonance. Because LTS interneurons are pacemakers whose rhythmic firing is perturbed by synaptic input, we tested the hypothesis that their spiking resonance arises from their phase resetting properties. Phase resetting curves (PRCs) were measured in LTS interneurons and SP neurons and used to make phase-oscillator models of both cell types. The models reproduced the broad tuning of LTS interneurons, and the differences from SP neurons. The spectral components of the PRC predicted each cell's sensitivity to corresponding input frequencies. LTS interneuron PRCs contain larger high-frequency components than SP neuron PRCs, providing enhanced responses to input frequencies above the cells' average firing rates. Thus, LTS cells can be entrained by input oscillations to which SP neurons are less responsive. These findings suggest that feedforward inhibition by LTS interneurons may regulate SP neurons' entrainment by oscillatory afferents.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Corpus Striatum/cytology , Corpus Striatum/physiology , Interneurons/physiology , Animals , Mice , Mice, Transgenic , Organ Culture Techniques
16.
Front Plant Sci ; 11: 962, 2020.
Article in English | MEDLINE | ID: mdl-32714353

ABSTRACT

Nitro-fatty acids (NO2-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO2-FAs trigger an antioxidant and a defence response against stressful situations. Among the properties of NO2-FAs highlight the ability to release NO therefore modulating specific protein targets through post-translational modifications (NO-PTMs). Thus, based on the capacity of NO2-FAs to act as physiological NO donors and using high-accuracy mass-spectrometric approaches, herein, we show that endogenous nitro-linolenic acid (NO2-Ln) can modulate S-nitrosoglutathione (GSNO) biosynthesis in Arabidopsis. The incubation of NO2-Ln with GSH was analyzed by LC-MS/MS and the in vitro synthesis of GSNO was noted. The in vivo confirmation of this behavior was carried out by incubating Arabidopsis plants with 15N-labeled NO2-Ln throughout the roots, and 15N-labeled GSNO (GS15NO) was detected in the leaves. With the aim to go in depth in the relation of NO2-FA and GSNO in plants, Arabidopsis alkenal reductase mutants (aer mutants) which modulate NO2-FAs levels were used. Our results constitute the first evidence of the modulation of a key NO biological reservoir in plants (GSNO) by these novel NO2-FAs, increasing knowledge about S-nitrosothiols and GSNO-signaling pathways in plants.

17.
Biol Sport ; 37(2): 131-138, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32508380

ABSTRACT

Different small-sided games (SSG) can be used by coaches to induce specific demands on athletes during team sports training. In basketball, defensive and time pressures are common stressors experienced by players during official matches. However, no studies have investigated the effect of changing these variables in SSG during training. We compared the physical and physiological demands of three basketball SSG performed in a half court with two hoops: 3vs3 with man-to-man defence in the half playing area, 3vs3 with man-to-man defence in the full playing area, and 3vs3 with a reduced shot-clock (3vs3HALF, 3vs3FULL, 3vs3RT, respectively). Twelve male U-17 basketball athletes formed four balanced teams. Each team played the three SSG against each other in a random order, totalling 18 SSG. During the SSG, the players wore triaxial accelerometers and heart rate monitors. SSG were filmed to record the players' motor actions. The results showed that 3vs3FULL (p=0.004, d=0.42, small-to-moderate effect) and 3vs3RT (p=0.026, d=0.33, small-to-moderate effect) increased the time spent in higher acceleration zones compared to 3vs3HALF. Both 3vs3FULL and 3vs3RT presented more transition sprints compared to 3vs3HALF. The 3vs3FULL also presented more fakes and the 3vs3RT presented more jumps compared to the 3vs3HALF. Physiological responses presented no differences between the SSG formats. In conclusion, defensive and time pressures increase the physical demand in 3vs3 SSG performed in the half court. The three SSG investigated in this study presented mean heart rate values close to 90% of the maximum heart rate, which suggests that these SSG may be used to increase athletes' aerobic performance.

18.
Antioxidants (Basel) ; 9(6)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503179

ABSTRACT

Environmental stresses negatively affect plant growth, development and crop productivity [...].

19.
Chem Commun (Camb) ; 56(38): 5186-5189, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32267261

ABSTRACT

We report the selective targeting of telomeric G4 DNA with a dithienylethene ligand and demonstrate the robust visible-light mediated switching of the G4 ligand binding mode and G-tetrad structure in physiologically-relevant conditions. The toxicity of the ligand to cervical cancer cells is modulated by the photoisomeric state of the ligand, indicating for the first time the potential of G4 to serve as a target for photopharmacological strategies.


Subject(s)
DNA/chemistry , Ethylenes/chemistry , Light , Binding Sites , G-Quadruplexes , Ligands , Molecular Structure , Photochemical Processes
20.
Chemistry ; 26(28): 6224-6233, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32030823

ABSTRACT

G-quadruplex nucleic acid structures have long been studied as anticancer targets whilst their potential in antiparasitic therapy has only recently been recognized and barely explored. Herein, we report the synthesis, biophysical characterization, and in vitro screening of a series of stiff-stilbene G4 binding ligands featuring different electronics, side-chain chemistries, and molecular geometries. The ligands display selectivity for G4 DNA over duplex DNA and exhibit nanomolar toxicity against Trypasanoma brucei and HeLa cancer cells whilst remaining up to two orders of magnitude less toxic to non-tumoral mammalian cell line MRC-5. Our study demonstrates that stiff-stilbenes show exciting potential as the basis of selective anticancer and antiparasitic therapies. To achieve the most efficient G4 recognition the scaffold must possess the optimal electronics, substitution pattern and correct molecular configuration.


Subject(s)
Antineoplastic Agents/pharmacology , Antiparasitic Agents/pharmacology , DNA/chemistry , Neoplasms/drug therapy , Stilbenes/chemistry , Telomere/metabolism , Antineoplastic Agents/chemistry , Antiparasitic Agents/chemistry , Binding Sites , Circular Dichroism , DNA/metabolism , Drug Design , G-Quadruplexes , Humans , Neoplasms/chemistry , Structure-Activity Relationship , Telomere/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...