Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Malar J ; 23(1): 112, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641572

ABSTRACT

BACKGROUND: In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS: We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS: Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS: These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.


Subject(s)
Anopheles , Bites and Stings , Malaria, Falciparum , Malaria, Vivax , Malaria , Plasmodium , Animals , Female , Humans , Anopheles/genetics , Malaria/epidemiology , Peru/epidemiology , Mosquito Vectors , Malaria, Vivax/epidemiology , Seasons
2.
Am J Trop Med Hyg ; 109(2): 288-295, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37364858

ABSTRACT

The persistence of malaria hotspots in Datem del Marañon Province, Peru, prompted vector control units at the Ministry of Health, Loreto Department, to collaborate with the Amazonian International Center of Excellence for Malaria Research to identify the main vectors in several riverine villages that had annual parasite indices > 15 in 2018-2019. Anophelinae were collected indoors and outdoors for two 12-hour nights/community during the dry season in 2019 using human landing catch. We identified four species: Nyssorhynchus benarrochi B, Nyssorhynchus darlingi, Nyssorhynchus triannulatus, and Anopheles mattogrossensis. The most abundant, Ny. benarrochi B, accounted for 96.3% of the total (7,550/7,844), of which 61.5% were captured outdoors (4,641/7,550). Six mosquitoes, one Ny. benarrochi B and five Ny. darlingi, were infected by Plasmodium falciparum or Plasmodium vivax. Human biting rates ranged from 0.5 to 592.8 bites per person per hour for Ny. benarrochi B and from 0.5 to 32.0 for Ny. darlingi, with entomological inoculation rates as high as 0.50 infective bites per night for Ny. darlingi and 0.25 for Ny. benarrochi B. These data demonstrate the risk of malaria transmission by both species even during the dry season in villages in multiple watersheds in Datem del Marañon province.


Subject(s)
Anopheles , Malaria , Plasmodium , Animals , Humans , Anopheles/parasitology , Peru/epidemiology , Seasons , Malaria/epidemiology
3.
Malar J ; 18(1): 384, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31791331

ABSTRACT

BACKGROUND: Knockdown resistance (kdr) is a well-characterized target-site insecticide resistance mechanism that is associated with DDT and pyrethroid resistance. Even though insecticide resistance to pyrethroids and DDT have been reported in Anopheles albimanus, Anopheles benarrochi sensu lato (s.l.), Anopheles darlingi, Anopheles nuneztovari s.l., and Anopheles pseudopunctipennis s.l. malaria vectors in Latin America, there is a knowledge gap on the role that kdr resistance mechanisms play in this resistance. The aim of this study was to establish the role that kdr mechanisms play in pyrethroid and DDT resistance in the main malaria vectors in Colombia, in addition to previously reported metabolic resistance mechanisms, such as mixed function oxidases (MFO) and nonspecific esterases (NSE) enzyme families. METHODS: Surviving (n = 62) and dead (n = 67) An. nuneztovari s.l., An. darlingi and An. albimanus mosquitoes exposed to diagnostic concentrations of DDT and pyrethroid insecticides were used to amplify and sequence a ~ 225 bp fragment of the voltage-gated sodium channels (VGSC) gene. This fragment spanning codons 1010, 1013 and 1014 at the S6 segment of domain II to identify point mutations, which have been associated with insecticide resistance in different species of Anopheles malaria vectors. RESULTS: No kdr mutations were detected in the coding sequence of this fragment in 129 samples, 62 surviving mosquitoes and 67 dead mosquitoes, of An. darlingi, An. nuneztovari s.l. and An. albimanus. CONCLUSION: Mutations in the VGSC gene, most frequently reported in other species of the genus Anopheles resistant to pyrethroid and DDT, are not associated with the low-intensity resistance detected to these insecticides in some populations of the main malaria vectors in Colombia. These results suggest that metabolic resistance mechanisms previously reported in these populations might be responsible for the resistance observed.


Subject(s)
Anopheles/genetics , DDT/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Animals , Anopheles/drug effects , Colombia , Malaria , Species Specificity
4.
Biomed Res Int ; 2018: 9163543, 2018.
Article in English | MEDLINE | ID: mdl-30228990

ABSTRACT

Insecticide resistance in malaria vectors threatens malaria prevention and control efforts. In Colombia the three primary vectors, Anopheles darlingi, An. nuneztovari s.l., and An. albimanus, have reported insecticide resistance to pyrethroids, organophosphates, carbamates, and DDT; however, the insecticide resistance monitoring is not continuous, and the data on the prevalence of resistance is scarce and geographically limited. We describe the resistance levels and intensity of previously detected resistant populations among primary malaria vectors from the most endemic malaria areas in Colombia. The study was carried out in 10 localities of five states in Colombia. Bioassays were carried out following the methodology of CDC Bottle Bioassay using the discriminating concentration and in order to quantify the intensity the specimens were exposed to 2, 5, and 10X discriminating concentrations. Five insecticides were tested: deltamethrin, lambda-cyhalothrin, alpha-cypermethrin, permethrin, and DDT. The results provide evidence of low resistance intensity and resistance highly localized to pyrethroids and DDT in key malaria vectors in Colombia. This may not pose a threat to malaria control yet but frequent monitoring is needed to follow the evolution of insecticide resistance.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticides/pharmacology , Malaria/transmission , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Animals , Colombia , DDT , Insect Vectors
5.
PLoS One ; 8(6): e67283, 2013.
Article in English | MEDLINE | ID: mdl-23840652

ABSTRACT

An insect's behavior is the expression of its integrated physiology in response to external and internal stimuli, turning insect behavior into a potential determinant of insecticide exposure. Behavioral traits may therefore influence insecticide efficacy against insects, compromising the validity of standard bioassays of insecticide activity, which are fundamentally based on lethality alone. By extension, insect 'personality' (i.e., an individual's integrated set of behavioral tendencies that is inferred from multiple empirical measures) may also be an important determinant of insecticide exposure and activity. This has yet to be considered because the behavioral studies involving insects and insecticides focus on populations rather than on individuals. Even among studies of animal 'personality', the relative contributions of individual and population variation are usually neglected. Here, we assessed behavioral traits (within the categories: activity, boldness/shyness, and exploration/avoidance) of individuals from 15 populations of the maize weevil (Sitophilus zeamais), an important stored-grain pest with serious problems of insecticide resistance, and correlated the behavioral responses with the activity of the insecticide deltamethrin. This analysis was performed at both the population and individual levels. There was significant variation in weevil 'personality' among individuals and populations, but variation among individuals within populations accounted for most of the observed variation (92.57%). This result emphasizes the importance of individual variation in behavioral and 'personality' studies. When the behavioral traits assessed were correlated with median lethal time (LT50) at the population level and with the survival time under insecticide exposure, activity traits, particularly the distance walked, significantly increased survival time. Therefore, behavioral traits are important components of insecticide efficacy, and individual variation should be considered in such studies. This is so because population differences provided only crude approximation of the individual personality in a restrained experimental setting likely to restrict individual behavior favoring the transposition of the individual variation to the population.


Subject(s)
Behavior, Animal/drug effects , Insecticides/pharmacology , Weevils/drug effects , Animals , Biological Assay , Insecticide Resistance , Nitriles/pharmacology , Personality , Pyrethrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...