Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 322(6): F680-F691, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35466689

ABSTRACT

Polycystic kidney disease (PKD) is the most common inheritable cause of kidney failure, and the underlying mechanisms remain incompletely uncovered. Renal nerves contribute to hypertension and chronic kidney disease-frequent complications of PKD. There is limited evidence that renal nerves may contribute to cardiorenal dysfunction in PKD and no investigations of the role of sympathetic versus afferent nerves in PKD. Afferent renal nerve activity (ARNA) is elevated in models of renal disease and fibrosis. However, it remains unknown if this is true in PKD. We tested the hypothesis that ARNA is elevated in a preclinical model of autosomal recessive PKD and that targeted renal nerve ablation would attenuate cystogenesis and cardiorenal dysfunction. We tested this by performing total renal denervation (T-RDNx) or afferent renal denervation (A-RDNx) denervation in 4-wk-old male and female PCK rats and then quantified renal and cardiovascular responses 6 wk following treatment. Cystogenesis was attenuated with A-RDNx and T-RDNx versus sham controls, highlighting a crucial role for renal afferent nerves in cystogenesis. In contrast, blood pressure was improved with T-RDNx but not A-RDNx. Importantly, treatments produced similar results in both males and females. Direct renal afferent nerve recordings revealed that ARNA was twofold greater in PCK rats versus noncystic controls and was directly correlated with cystic severity. To our knowledge, we are the first to demonstrate that PCK rats have greater ARNA than noncystic, age-matched controls. The findings of this study support a novel and crucial role for renal afferent innervation in cystogenesis in the PCK rat.NEW & NOTEWORTHY This is the first study to dissect the contributions of renal sympathetic and afferent innervation in the PCK rat, a preclinical model of autosomal recessive polycystic kidney disease. We demonstrated that resting afferent renal nerve activity is greater in the PCK rat than noncystic controls and that basal afferent renal nerve activity is directly correlated with the extent of renal cystogenesis.


Subject(s)
Polycystic Kidney, Autosomal Recessive , Animals , Arterial Pressure , Blood Pressure , Female , Kidney , Male , Polycystic Kidney, Autosomal Recessive/genetics , Rats , Sympathetic Nervous System
2.
Drug Metab Dispos ; 48(7): 603-612, 2020 07.
Article in English | MEDLINE | ID: mdl-32393653

ABSTRACT

Equilibrative nucleoside transporters (ENTs) transport nucleosides across the blood-testis barrier (BTB). ENTs are of interest to study the disposition of nucleoside reverse-transcriptase inhibitors (NRTIs) in the human male genital tract because of their similarity in structure to nucleosides. HeLa S3 cells express ENT1 and ENT2 and were used to compare relative interactions of these transporters with selected NRTIs. Inhibition of [3H]uridine uptake by NBMPR was biphasic, with IC50 values of 11.3 nM for ENT1 and 9.6 µM for ENT2. Uptake measured with 100 nM NBMPR represented ENT2-mediated transport; subtracting that from total uptake represented ENT1-mediated transport. The kinetics of ENT1- and ENT2-mediated [3H]uridine uptake revealed no difference in Jmax (16.53 and 30.40 pmol cm-2 min-1) and an eightfold difference in Kt (13.6 and 108.9 µM). The resulting fivefold difference in intrinsic clearance (Jmax/Kt) for ENT1- and ENT2 transport accounted for observed inhibition of [3H]uridine uptake by 100 nM NBMPR. Millimolar concentrations of the NRTIs emtricitabine, didanosine, lamivudine, stavudine, tenofovir disoproxil, and zalcitabine had no effect on ENT transport activity, whereas abacavir, entecavir, and zidovudine inhibited both transporters with IC50 values of ∼200 µM, 2.5 mM, and 2 mM, respectively. Using liquid chromatography-tandem mass spectrometry and [3H] compounds, the data suggest that entecavir is an ENT substrate, abacavir is an ENT inhibitor, and zidovudine uptake is carrier-mediated, although not an ENT substrate. These data show that HeLa S3 cells can be used to explore complex transporter selectivity and are an adequate model for studying ENTs present at the BTB. SIGNIFICANCE STATEMENT: This study characterizes an in vitro model using S-[(4-nitrophenyl)methyl]-6-thioinosine to differentiate between equilibrative nucleoside transporter (ENT) 1- and ENT2-mediated uridine transport in HeLa cells. This provides a method to assess the influence of nucleoside reverse-transcriptase inhibitors on natively expressed transporter function. Determining substrate selectivity of the ENTs in HeLa cells can be effectively translated into the activity of these transporters in Sertoli cells that comprise the blood-testis barrier, thereby assisting targeted drug development of compounds capable of circumventing the blood-testis barrier.


Subject(s)
Blood-Testis Barrier/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/metabolism , Nucleosides/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacokinetics , Drug Evaluation, Preclinical/methods , HeLa Cells , Humans , Inhibitory Concentration 50 , Zidovudine/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...