Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Clin Transl Oncol ; 26(4): 864-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37651021

ABSTRACT

PURPOSE: Clinical practice guidelines recommend that all patients with metastatic colorectal cancer (mCRC) should be tested for mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H). We aimed to describe the dMMR/MSI-H testing practice in patients with mCRC in Spanish centers. METHODS: Multicenter, observational retrospective study that included patients newly diagnosed with mCRC or who progressed to a metastatic stage from early/localized stages. RESULTS: Three hundred patients were included in the study from May 2020 through May 2021, with a median age of 68 years, and two hundred twenty-five (75%) had stage IV disease at initial diagnosis; two hundred eighty-four patients received first-line treatment, and dMMR/MSI-H testing was performed in two hundred fifty-one (84%) patients. The results of the dMMR/MSI-H tests were available in 61 (24%) of 251 patients before the diagnosis of metastatic disease and in 191 (81%) of 236 evaluable patients for this outcome before the initiation of first-line treatment. Among the 244 patients who were tested for dMMR/MSI-H with IHC or PCR, 14 (6%) were MMR deficient. The most frequent type of first-line treatment was the combination of chemotherapy and biological agent, that was received by 71% and 50% of patients with MMR proficient and deficient tumors, respectively, followed by chemotherapy alone, received in over 20% of patients in each subgroup. Only 29% of dMMR/MSI-H tumors received first-line immunotherapy. CONCLUSION: Our study suggests that a high proportion of patients with mCRC are currently tested for dMMR/MSI-H in tertiary hospitals across Spain. However, there is still room for improvement until universal testing is achieved. TRIAL REGISTRATION: Not applicable.


Subject(s)
Brain Neoplasms , Colonic Neoplasms , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Rectal Neoplasms , Aged , Humans , Colonic Neoplasms/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Microsatellite Instability , Retrospective Studies , Spain
2.
J Biomol Struct Dyn ; : 1-9, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909479

ABSTRACT

This study explored new methods to inhibit human 5-lipoxygenase (5-hLOX) by analyzing natural terpenes that share structural similarities with acetoxyboswellic acid (AKBA). Enzymatic assays were used to evaluate the terpene's ability to inhibit the enzyme, potentially providing anti-inflammatory benefits. Our research focused on how certain types of triterpenes can inhibit 5-hLOX allosterically via a newly discovered allosteric site identified by enzyme crystallization. To determine whether natural boswellic acid analogs mimicked the allosteric known inhibitor AKBA, we combined 5-hLOX inhibition with in silico modeling. Our research has discovered that certain amino acids, specifically Arg 138, Arg 101, Arg 68, and Gln129, located in the allosteric 5-hLOX pocket, play a critical role in stabilizing glycyrrhetinic isomers. These amino acids form hydrogen bonds and hydrophobic interactions that contribute to the inhibitory potency of boswellic acid derivatives. We have found that α and ß glycyrrhetinic acid isomers, carbenoxolone, and to a minor extent, prednisolone, have a potent inhibitory effect against 5-hLOX with IC50 values of 8.64, 3.94, 52.98, and 291.20 µM, respectively. These values are in line with our calculated in silico allosteric site binding energy estimations. In contrast, other steroidal or non-steroidal anti-inflammatory agents exhibited inhibitory potencies larger than 500 µM. However, the specific pharmacodynamic mechanisms are currently unknown. We propose that AKBA analogs may lead to the future development of novel anti-inflammatory agents.Communicated by Ramaswamy H. Sarma.

3.
Food Microbiol ; 115: 104344, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567627

ABSTRACT

One interesting strategy to address the increasing alcohol content of wines, associated with climate change, is to reduce the ethanol yield during fermentation. Within this strategy, the approach that would allow the clearest reduction in alcohol content is the respiration of part of the grape sugars by yeasts. Non-Saccharomyces species can be used for this purpose but suffer from a limited ability to dominate the process and complete fermentation. In turn, Saccharomyces cerevisiae shows a high production of acetic acid under the growth conditions required for respiration. Previously proposed procedures used combinations of non-Saccharomyces and S. cerevisiae starters, or a strain of S. cerevisiae (PR1018), with unique metabolic properties. In both cases, precise management of oxygen availability was required to overcome the acetic acid problem. In this work, we have developed a laboratory scale process to take advantage of the properties of PR1018 and a strain of Metschnikowia pulcherrima. This process is more robust than the previous ones and does not rely on strict control of oxygenation or even the use of this particular strain of S. cerevisiae. Aeration can be interrupted instantly without impairing the volatile acidity. Under the selected conditions, an ethanol reduction of around 3% (v/v) was obtained compared to the standard fermentation control.


Subject(s)
Vitis , Wine , Saccharomyces cerevisiae/metabolism , Wine/analysis , Ethanol/metabolism , Fermentation , Acetic Acid/metabolism , Vitis/metabolism
4.
Food Microbiol ; 114: 104282, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290870

ABSTRACT

The use of yeast respiratory metabolism has been proposed as a promising approach to solve the problem of increasing ethanol content in wine, which is largely due to climate change. The use of S. cerevisiae for this purpose is mostly hampered by acetic acid overproduction generated under the necessary aerobic conditions. However, it was previously shown that a reg1 mutant, alleviated for carbon catabolite repression (CCR), showed low acetic acid production under aerobic conditions. In this work directed evolution of three wine yeast strains was performed to recover CCR-alleviated strains, expecting they will also be improved concerning volatile acidity. This was done by subculturing strains on galactose, in the presence of 2-deoxyglucose for around 140 generations. As expected, all evolved yeast populations released less acetic acid than their parental strains in grape juice, under aerobic conditions. Single clones were isolated from the evolved populations, either directly or after one cycle of aerobic fermentation. Only some clones from one of three original strains showed lower acetic acid production than their parental strain. Most clones isolated from EC1118 showed slower growth. However, even the most promising clones failed to reduce acetic acid production under aerobic conditions in bioreactors. Therefore, despite the concept of selecting low acetic acid producers by using 2-deoxyglucose as selective agent was found to be correct, especially at the population level, the recovery of strains with potential industrial utility by this experimental approach remains a challenge.


Subject(s)
Fermentation , Saccharomyces cerevisiae , Wine , Acetic Acid/metabolism , Deoxyglucose/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/metabolism , Vitis/microbiology , Wine/microbiology , Galactose/metabolism , Food Microbiology , Directed Molecular Evolution , Aerobiosis , Anaerobiosis
5.
J Alzheimers Dis Rep ; 7(1): 513-525, 2023.
Article in English | MEDLINE | ID: mdl-37313485

ABSTRACT

Despite advances in the detection of biomarkers and in the design of drugs that can slow the progression of Alzheimer's disease (AD), the underlying primary mechanisms have not been elucidated. The diagnosis of AD has notably improved with the development of neuroimaging techniques and cerebrospinal fluid biomarkers which have provided new information not available in the past. Although the diagnosis has advanced, there is a consensus among experts that, when making the diagnosis in a specific patient, many years have probably passed since the onset of the underlying processes, and it is very likely that the biomarkers in use and their cutoffs do not reflect the true critical points for establishing the precise stage of the ongoing disease. In this context, frequent disparities between current biomarkers and cognitive and functional performance in clinical practice constitute a major drawback in translational neurology. To our knowledge, the In-Out-test is the only neuropsychological test developed with the idea that compensatory brain mechanisms exist in the early stages of AD, and whose positive effects on conventional tests performance can be reduced in assessing episodic memory in the context of a dual-task, through which the executive auxiliary networks are 'distracted', thus uncover the real memory deficit. Furthermore, as additional traits, age and formal education have no impact on the performance of the In-Out-test.

6.
J Inorg Biochem ; 245: 112233, 2023 08.
Article in English | MEDLINE | ID: mdl-37141763

ABSTRACT

In the search for new 5-LOX inhibitors, two ferrocenyl Schiff base complexes functionalized with catechol ((ƞ5-(E)-C5H4-NCH-3,4-benzodiol)Fe(ƞ5-C5H5) (3a)) and vanillin ((ƞ5-(E)-C5H4-NCH-3-methoxy-4-phenol)Fe(ƞ5-C5H5) (3b)) were obtained. Complexes 3a and 3b were biologically evaluated as 5-LOX inhibitors showed potent inhibition compared to their organic analogs (2a and 2b) and known commercial inhibitors, with IC50 = 0.17 ± 0.05 µM for (3a) and 0.73 ± 0.06 µM for (3b) demonstrated a highly inhibitory and potent effect against 5-LOX due to the incorporation of the ferrocenyl fragment. Molecular dynamic studies showed a preferential orientation of the ferrocenyl fragment toward the non-heme iron of 5-LOX, which, together with electrochemical and in-vitro studies, allowed us to propose a competitive redox deactivation mechanism mediated by water, where Fe(III)-enzyme can be reduced by the ferrocenyl fragment. An Epa/IC50 relationship was observed, and the stability of the Schiff bases was evaluated by SWV in the biological medium, observing that the hydrolysis does not affect the high potency of the complexes, making them interesting alternatives for pharmacological applications.


Subject(s)
Arachidonate 5-Lipoxygenase , Schiff Bases , Schiff Bases/pharmacology , Schiff Bases/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Ferric Compounds , Molecular Dynamics Simulation , Oxidation-Reduction , Lipoxygenase Inhibitors/pharmacology , Structure-Activity Relationship
7.
Biomed Pharmacother ; 162: 114657, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37023623

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC), is the most common aggressive cancer of the pancreas. The standard care of PDAC includes tumor resection and chemotherapy, but the lack of early diagnosis and the limited response to the treatment worsens the patient's condition. In order to improve the efficiency of chemotherapy, we look for more efficient systems of drug delivery. We isolated and fully characterized small Extracellular Vesicles (EVs) from the RWP-1 cell line. Our study indicates that the direct incubation method was the most efficient loading protocol and that a minimum total amount of drug triggers an effect on tumor cells. Therefore, we loaded the small EVs with two chemotherapeutic drugs (Temozolomide and EPZ015666) by direct incubation method and the amount of drug loaded was measured by high-performance liquid chromatography (HPLC). Finally, we tested their antiproliferative effect on different cancer cell lines. Moreover, the system is highly dependent on the drug structure and therefore RWP-1 small EVsTMZ were more efficient than RWP-1 small EVsEPZ015666. RWP-1 derived small EVs represent a promising drug delivery tool that can be further investigated in preclinical studies and its combination with PRMT5 inhibitor can be potentially developed in clinical trials for the treatment of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Extracellular Vesicles/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Pancreatic Neoplasms
8.
J Mol Biol ; 435(8): 168033, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36858171

ABSTRACT

The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 µM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Chromatin , Intrinsically Disordered Proteins , Neoplasm Proteins , Nuclear Proteins , Protein-Arginine Deiminase Type 4 , Base Sequence , Chromatin/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Binding , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics
9.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36982984

ABSTRACT

Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients. We have isolated and fully characterized small extracellular vesicles (EVs) from seven patient-derived GBM cell lines. After loading them with two different drugs, Temozolomide (TMZ) and EPZ015666, we observed a reduction in the total amount of drugs needed to trigger an effect on tumor cells. Moreover, we observed that GBM-derived small EVs, although with lower target specificity, can induce an effect on pancreatic cancer cell death. These results suggest that GBM-derived small EVs represent a promising drug delivery tool for further preclinical studies and potentially for the clinical development of GBM treatments.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Nanoparticles , Humans , Glioblastoma/metabolism , Cell Line, Tumor , Brain Neoplasms/metabolism , Extracellular Vesicles/metabolism , Drug Resistance, Neoplasm
10.
Microb Biotechnol ; 16(5): 1027-1040, 2023 05.
Article in English | MEDLINE | ID: mdl-36840970

ABSTRACT

The recent introduction of non-conventional yeast species as companion wine starters has prompted a growing interest in microbial interactions during wine fermentation. There is evidence of interactions through interference and exploitation competition, as well as interactions depending on physical contact. Furthermore, the results of some transcriptomic analyses suggest interspecific communication, but the molecules or biological structures involved in recognition are not well understood. In this work, we explored extracellular vesicles (EVs) as possible mediators of interspecific communication between wine yeasts. The transcriptomic response of Saccharomyces cerevisiae after 3 h of contact with a fraction enriched in EVs of Metschnikowia pulcherrima was compared with that induced by active M. pulcherrima cells. Interestingly, there is a high level of overlap between the transcriptomic profiles of yeast cells challenged by either M. pulcherrima whole cells or the EV-enriched fraction. The results indicate an upregulation of yeast metabolism in response to competing species (in line with previous results). This finding points to the presence of a signal, in the EV-enriched fraction, that can be perceived by the yeast cells as a cue for the presence of competitors, even in the absence of metabolically active cells of the other species.


Subject(s)
Extracellular Vesicles , Wine , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Wine/analysis , Coculture Techniques , Fermentation , Extracellular Vesicles/metabolism
11.
Mol Syst Biol ; 18(10): e10980, 2022 10.
Article in English | MEDLINE | ID: mdl-36201279

ABSTRACT

Adaptive evolution under controlled laboratory conditions has been highly effective in selecting organisms with beneficial phenotypes such as stress tolerance. The evolution route is particularly attractive when the organisms are either difficult to engineer or the genetic basis of the phenotype is complex. However, many desired traits, like metabolite secretion, have been inaccessible to adaptive selection due to their trade-off with cell growth. Here, we utilize genome-scale metabolic models to design nutrient environments for selecting lineages with enhanced metabolite secretion. To overcome the growth-secretion trade-off, we identify environments wherein growth becomes correlated with a secondary trait termed tacking trait. The latter is selected to be coupled with the desired trait in the application environment where the trait manifestation is required. Thus, adaptive evolution in the model-designed selection environment and subsequent return to the application environment is predicted to enhance the desired trait. We experimentally validate this strategy by evolving Saccharomyces cerevisiae for increased secretion of aroma compounds, and confirm the predicted flux-rerouting using genomic, transcriptomic, and proteomic analyses. Overall, model-designed selection environments open new opportunities for predictive evolution.


Subject(s)
Proteomics , Saccharomyces cerevisiae , Genome , Genomics , Phenotype , Saccharomyces cerevisiae/metabolism
12.
J Fungi (Basel) ; 8(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36294599

ABSTRACT

Microbial diversity in vineyards and in grapes has generated significant scientific interest. From a biotechnological perspective, vineyard and grape biodiversity has been shown to impact soil, vine, and grape health and to determine the fermentation microbiome and the final character of wine. Thus, an understanding of the drivers that are responsible for the differences in vineyard and grape microbiota is required. The impact of soil and climate, as well as of viticultural practices in geographically delimited areas, have been reported. However, the limited scale makes the identification of generally applicable drivers of microbial biodiversity and of specific microbial fingerprints challenging. The comparison and meta-analysis of different datasets is furthermore complicated by differences in sampling and in methodology. Here we present data from a wide-ranging coordinated approach, using standardized sampling and data generation and analysis, involving four countries with different climates and viticultural traditions. The data confirm the existence of a grape core microbial consortium, but also provide evidence for country-specific microbiota and suggest the existence of a cultivar-specific microbial fingerprint for Cabernet Sauvignon grape. This study puts in evidence new insight of the grape microbial community in two continents and the importance of both location and cultivar for the definition of the grape microbiome.

13.
Food Microbiol ; 106: 104038, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35690442

ABSTRACT

Malolactic fermentation is essential for the quality of red wines and some other wine styles. Spontaneous malolactic fermentation is often driven by Oenococcus oeni, and commercial starters for this purpose are also often of this species. The increasing number of microbial species and inoculation strategies in winemaking has prompted a growing interest in microbial interactions during wine fermentation. Among other interaction mechanisms, extracellular vesicles have been hypothesized to play a role in this context. Extracellular vesicles have already been described and analysed for several wine yeast species. In this work, the production of extracellular vesicles by O. oeni is reported for the first time. The protein content of these extracellular vesicles is also characterised. It shows differences and similarities with the recently described protein content of Lactiplantibacillus plantarum, a bacterial species also capable of performing malolactic fermentation of wine (and used sometimes as an alternative starter). This work further contributes to the development of the field of extracellular vesicles in food biotechnology.


Subject(s)
Extracellular Vesicles , Oenococcus , Wine , Extracellular Vesicles/metabolism , Fermentation , Malates/metabolism , Oenococcus/genetics , Oenococcus/metabolism , Saccharomyces cerevisiae/metabolism , Wine/analysis
14.
Microb Biotechnol ; 15(5): 1339-1356, 2022 05.
Article in English | MEDLINE | ID: mdl-34173338

ABSTRACT

Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.


Subject(s)
Wine , Fermentation , Genetic Engineering , Saccharomyces cerevisiae/genetics , Wine/analysis
15.
Food Microbiol ; 101: 103893, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34579853

ABSTRACT

Aerobic fermentation was previously proposed to reduce the ethanol content of wine. The main constraint found for Saccharomyces cerevisiae to be used under these conditions was the high levels of acetic acid produced by all S. cerevisiae strains previously tested. This work addressed the identification of S. cerevisiae wine yeast strains suitable for aerobic fermentation and the optimization of fermentation conditions to obtain a reduced ethanol yield with acceptable volatile acidity. This approach unveiled a great diversity in acetic acid yield for different S. cerevisiae strains under aerobic conditions, with some strains showing very low volatile acidity. Three strains were selected for further characterization in bioreactors, with natural grape must, under aerobic and anaerobic conditions. Ethanol yields were lower under aerobic than under anaerobic conditions for all strains, and acetic acid levels were low for two of them. Strain-dependent changes in volatile compounds were also observed between aerobic and anaerobic conditions. Finally, the process was optimized at laboratory scale for one strain. This is the first report of S. cerevisiae wine strains showing low acetic acid production under aerobic conditions and paves the way for simplified aerobic fermentation protocols aimed to reducing the alcohol content of wines.


Subject(s)
Aerobiosis , Saccharomyces cerevisiae , Wine , Acetic Acid/analysis , Ethanol/analysis , Fermentation , Wine/analysis , Wine/microbiology
16.
Front Mol Neurosci ; 14: 790466, 2021.
Article in English | MEDLINE | ID: mdl-34955746

ABSTRACT

The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes. Here, we present a novel genetic Flrt3-CreERT2 knock-in mouse that labels a small subpopulation of RGCs. Using single-cell injection of fluorescent dyes in Flrt3 positive RGCs, we distinguished four morphological RGC subtypes. Anterograde tracings using a fluorescent Cre-dependent Adeno-associated virus (AAV) revealed that a subgroup of Flrt3 positive RGCs specifically project to the medial terminal nucleus (MTN), which is part of the accessory optic system (AOS) and is essential in driving reflex eye movements for retinal image stabilization. Functional characterization using ex vivo patch-clamp recordings showed that the MTN-projecting Flrt3 RGCs preferentially respond to downward motion in an ON-fashion. These neurons distribute in a regular pattern and most of them are bistratified at the level of the ON and OFF bands of cholinergic starburst amacrine cells where they express the known ON-OFF direction-selective RGC marker CART. Together, our results indicate that MTN-projecting Flrt3 RGCs represent a new functionally homogeneous AOS projecting direction-selective RGC subpopulation.

17.
Biomolecules ; 11(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34827567

ABSTRACT

One of the most prominent consequences of global climate warming for the wine industry is a clear increase of the sugar content in grapes, and thus the alcohol level in wines. Among the several approaches to address this important issue, this review focuses on biotechnological solutions, mostly relying on the selection and improvement of wine yeast strains for reduced ethanol yields. Other possibilities are also presented. Researchers are resorting to both S. cerevisiae and alternative wine yeast species for the lowering of alcohol yields. In addition to the use of selected strains under more or less standard fermentation conditions, aerobic fermentation is increasingly being explored for this purpose. Genetic improvement is also playing a role in the development of biotechnological tools to counter the increase in the wine alcohol levels. The use of recombinant wine yeasts is restricted to research, but its contribution to the advancement of the field is still relevant. Furthermore, genetic improvement by non-GMO approaches is providing some interesting results, and will probably result in the development of commercial yeast strains with a lower alcohol yield in the near future. The optimization of fermentation processes using natural isolates is, anyway, the most probable source of advancement in the short term for the production of wines with lower alcohol contents.


Subject(s)
Fermentation , Saccharomyces cerevisiae , Ethanol , Wine
18.
Foods ; 10(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34441512

ABSTRACT

In parallel with the development of non-Saccharomyces starter cultures in oenology, a growing interest has developed around the interactions between the microorganisms involved in the transformation of grape must into wine. Nowadays, it is widely accepted that the outcome of a fermentation process involving two or more inoculated yeast species will be different from the weighted average of the corresponding individual cultures. Interspecific interactions between wine yeasts take place on several levels, including interference competition, exploitation competition, exchange of metabolic intermediates, and others. Some interactions could be a simple consequence of each yeast running its own metabolic programme in a context where metabolic intermediates and end products from other yeasts are present. However, there are clear indications, in some cases, of specific recognition between interacting yeasts. In this article we discuss the mechanisms that may be involved in the communication between wine yeasts during alcoholic fermentation.

19.
Calcif Tissue Int ; 109(2): 132-138, 2021 08.
Article in English | MEDLINE | ID: mdl-33839802

ABSTRACT

X-Linked Hypophosphatemia (XLH) is the most common cause of inherited hypophosphatemic rickets. Dental involvement, including spontaneous abscesses and/or fistulae, is an important part of the disease and has not been completely defined, especially in cohorts from developing countries. To describe oral health status in a cohort of Chilean patients with XLH and explore its correlation with biochemical presentation and treatment, we conducted a cross-sectional observational study of patients with PHEX mutation-confirmed XLH. All patients had an oral clinical exam, radiographic evaluation; clinical and biochemical data were obtained to determine their association with oral features. Twenty-six patients were included, 77% adults and 23% children. Most adults (89%) had past or current dental pulp pathology (abscesses and/or fistulae). Pulpal chamber enlargement and radiolucent apical lesions were common radiological features (94 and 74%, respectively). In children, abscess and/or fistulae were also common (33%). Caries index, which was determined by dmft/DMFT, was higher than the Chilean national average. Early and long-term therapy with phosphate and activated vitamin D was associated with lower carious index and attachment loss. XLH patients frequently present with high pulpal involvement and carious index. Conventional therapy was associated with lower carious index and attachment loss. These data highlight the importance of early and periodical dental care in order to prevent dental damage and assure a good quality of oral health for XLH patients.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Adult , Child , Cross-Sectional Studies , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/epidemiology , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factor-23 , Humans , Mutation , Oral Health , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Phosphates
20.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540681

ABSTRACT

D-amino acid oxidase (DAAO) is an enzyme that catalyzes the oxidation of D-amino acids generating H2O2. The enzymatic chimera formed by DAAO bound to the choline-binding domain of N-acetylmuramoyl-L-alanine amidase (CLytA) induces cytotoxicity in several pancreatic and colorectal carcinoma and glioblastoma cell models. In the current work, we determined whether the effect of CLytA-DAAO immobilized in magnetic nanoparticles, gold nanoparticles, and alginate capsules offered some advantages as compared to the free CLytA-DAAO. Results indicate that the immobilization of CLytA-DAAO in magnetic nanoparticles increases the stability of the enzyme, extending its time of action. Besides, we compared the effect induced by CLytA-DAAO with the direct addition of hydrogen peroxide, demonstrating that the progressive generation of reactive oxygen species by CLytA-DAAO is more effective in inducing cytotoxicity than the direct addition of H2O2. Furthermore, a pilot study has been initiated in biopsies obtained from pancreatic and colorectal carcinoma and glioblastoma patients to evaluate the expression of the main genes involved in resistance to CLytA-DAAO cytotoxicity. Based on our findings, we propose that CLytA-DAAO immobilized in magnetic nanoparticles could be effective in a high percentage of patients and, therefore, be used as an anti-cancer therapy for pancreatic and colorectal carcinoma and glioblastoma.


Subject(s)
D-Amino-Acid Oxidase/metabolism , Magnetite Nanoparticles/chemistry , Neoplasms/therapy , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins/chemistry , Cell Line, Tumor , Colorectal Neoplasms/therapy , D-Amino-Acid Oxidase/therapeutic use , Glioblastoma/therapy , Humans , Hydrogen Peroxide/metabolism , Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Reactive Oxygen Species/toxicity , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...