Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 22(38): 13532-9, 2016 Sep 12.
Article in English | MEDLINE | ID: mdl-27465352

ABSTRACT

We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised.

2.
Chemistry ; 21(17): 6449-64, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25772122

ABSTRACT

The sequential reaction of a multisite coordinating compartmental ligand [2-(2-hydroxy-3-(hydroxymethyl)-5-methylbenzylideneamino)-2-methylpropane-1,3-diol] (LH4 ) with appropriate lanthanide salts followed by the addition of [Mg(NO3 )2 ]⋅6 H2 O or [Zn(NO3 )2 ]⋅6 H2 O in a 4:1:2 stoichiometric ratio in the presence of triethylamine affords a series of isostructural heterometallic trinuclear complexes containing [Mg2 Ln](3+) (Ln=Dy, Gd, and Tb) and [Zn2 Ln](3+) (Ln=Dy, Gd, and Tb) cores. The formation of these complexes is demonstrated by X-ray crystallography as well as ESI-MS spectra. All complexes are isostructural possessing a linear trimetallic core with a central lanthanide ion. The comprehensive studies discussed involve the synthesis, structure, magnetism, and photophysical properties on this family of trinuclear [Mg2 Ln](3+) and [Zn2 Ln](3+) heterometallic complexes. [Mg2 Dy](3+) and [Zn2 Dy](3+) show slow relaxation of the magnetization below 12 K under zero applied direct current (dc) field, but without reaching a neat maximum, which is due to the overlapping with a faster quantum tunneling relaxation mediated through dipole-dipole and hyperfine interactions. Under a small applied dc field of 1000 Oe, the quantum tunneling is almost suppressed and temperature and frequency dependent peaks are observed, thus confirming the single-molecule magnet behavior of complexes [Mg2 Dy](3+) and [Zn2 Dy](3+) .

SELECTION OF CITATIONS
SEARCH DETAIL
...