Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 12(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36143457

ABSTRACT

Velvet mesquite (Prosopis velutina) is a native legume of the southwestern United States and northwestern Mexico, contributing significantly to the desert ecosystem and playing key ecological roles. It is also an important cause of allergic respiratory disease widely distributed in the Sonoran, Chihuahuan, and Mojave Deserts. However, no allergens from velvet mesquite pollen have been identified to date. Pollen proteins were extracted and analyzed by one- and two-dimensional electrophoresis and immunoblotting using a pool of 11 sera from mesquite-sensitive patients as the primary antibody. IgE-recognized protein spots were identified by mass spectrometry and bioinformatics analysis. Twenty-four unique proteins, including proteins well known as pollen, food, airway, or contact allergens and four proteins not previously reported as pollen allergens, were identified. This is the first report on allergenic proteins in velvet mesquite pollen. These findings will contribute to the development of specific diagnosis and treatment of mesquite pollen allergy.

2.
J Proteomics ; 248: 104348, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34391935

ABSTRACT

Pecan (C. illinoinensis) pollen is an important cause of allergic respiratory disease. Pecan is distributed worldwide as shade, ornamental or cultivation tree. To date three well known pecan food allergens have been reported, however, pollen allergens have not been identified. Here, we describe the first identification of IgE recognized pecan pollen proteins, for which proteins were analyzed by 2-DE and immunoblotting using a pool of 8 sera from pecan sensitive patients as primary antibody. IgE recognized protein spots were analyzed by LC-MS/MS and identified using a database of translated protein sequences obtained by the assembly of C. illinoinensis public transcriptomic information. This study has identified 17 IgE binding proteins from pecan pollen including proteins widely recognized as allergens and panallergens. These findings will contribute to develop specific diagnosis and treatment of pecan pollen allergy. SIGNIFICANCE: Pecan is a tree highly valued for its fruits that have a great commercial value. To date three pecan seed storage proteins have been officially recognized by the WHO/IUIS allergen nomenclature subcommittee as food allergens (Car i 1, Car i 2 and Car i 4). Pecan tree pollen is highly allergenic and a clinically relevant cause of allergies in North America (USA and Mexico) and regions where the tree is extensively cultivated (Israel, South Africa, Australia, Egypt, Peru, Argentina, and Brazil). Here, we describe the first identification of IgE recognized pollen proteins using an immunoproteomics approach and a protein database created by the assembly of pecan public transcriptomic information. The findings described here will allow the development of new diagnostic and therapeutic modalities for pecan pollen allergy.


Subject(s)
Carya , Food Hypersensitivity , Allergens , Chromatography, Liquid , Humans , Plant Proteins , Pollen , Tandem Mass Spectrometry
3.
J Allergy Clin Immunol Pract ; 9(8): 3026-3032, 2021 08.
Article in English | MEDLINE | ID: mdl-33862268

ABSTRACT

Enolase is one of the most abundant cytosolic enzymes as well as an important glycolytic metalloenzyme highly conserved among organisms from different taxonomical groups. Participation of enolase in processes in which its enzymatic activity is not required has been widely reported. Some of these processes provide special qualities to microorganisms, which favor, in some cases, their pathogenicity. Remarkably, enolase has been reported as an allergen by itself, it is well recognized as allergenic in molds and yeasts, whereas it has also been recognized by the immune system of susceptible individuals acting as a food and inhaled allergen from other diverse sources such as insects, birds, fishes, and plants. To date, 14 enolases have been officially recognized by the World Health Organization/International Union of Immunological Societies Allergen Nomenclature Subcommittee. The use of discovery proteomics has also uncovered novel allergenic enolases, particularly from pollen sources. Here, we review the relevance of enolases as sensitizers and as nonsensitizing cross-reactive allergens in allergic disease.


Subject(s)
Hypersensitivity , Phosphopyruvate Hydratase , Allergens , Cross Reactions , Humans , Pollen
4.
Food Sci Biotechnol ; 28(3): 831-840, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31093441

ABSTRACT

Probiotics are live microorganisms conferring health benefits when administered in adequate amounts. However, the passage through the gastrointestinal tract represents a challenge due to pH variations, proteases, and bile salts. This study aimed to evaluate the proteomic response of Saccharomyces boulardii to simulated gastrointestinal digestion and the influence of encapsulation on yeast viability. Different pH values and time periods simulating the passage through different sections of the gastrointestinal tract were applied to unencapsulated and encapsulated yeasts. Encapsulation in 0.5% calcium alginate did not improve yeast survival or induce changes in protein patterns whereas protein extracts from control and digested yeasts showed remarkable differences when separated by SDS-PAGE. Protein bands were analyzed by tandem mass spectrometry. Protein identification revealed unique proteins that changed acutely in abundance after simulated digestion. Carbohydrate metabolism, protein processing, and oxide-reduction were the biological processes most affected by simulated gastrointestinal digestion in S. boulardii.

SELECTION OF CITATIONS
SEARCH DETAIL
...