ABSTRACT
In vivo extracellular recordings of 102 units in the central nucleus of the inferior colliculus (IC), were made in chronically implanted guinea-pigs during the sleep/wake cycle. During wakefulness, the units were classified according to their response characteristics. Most neurons (63%) recorded showed changes, increasing or decreasing in the number of evoked discharges during the animal's transitions between wakefulness and slow-wave sleep. In the paradoxical sleep phase, the result was similar; changes were observed in most neurons, while only 11% of units did not shift their discharge pattern during ipsilateral sound stimulation. The post-stimulus time histogram of the overall evoked pattern of discharge showed sleep/wake dependency, i.e. changed in 35% of the units recorded during the 50 ms of sound stimulation. Fifty-five percent of auditory neurons did not show any change in the spontaneous firing rate during slow-wave sleep as compared to the previous waking period, while 22% exhibited a discharge increase and 23% decreased their firing. During paradoxical sleep, 14 out of 17 cells increased their spontaneous firing rate. The IC auditory neurons send descending connections to regions such as the dorsal pontine nuclei, known to mediate sleep processes. Thus, for constant auditory input, the firing rate or number of discharge variations are due to functional shifts in the sleeping brain. Auditory processing is present during sleep and differs from that observed during wakefulness. Differences were observed in the evoked firing number and/or spontaneous rate, as well as in the pattern of discharge. The ultimate reason for auditory unit shifts during sleep remains yet unexplained.
ABSTRACT
The effects of behavioral shifts on auditory lateral superior olive neurons were analyzed in guinea-pigs during the sleep-waking cycle with single unit extracellular recordings at the unit characteristic frequency and with low sound intensity. Shifts in the number of spikes in response to pure tones and in spontaneous firing proved to be closely related to waking, slow wave and paradoxical sleep. All of the recorded lateral superior olive (LSO) auditory neurons showed sleep-related firing shifts. Moreover, changes in the pattern of discharge over time were observed in 15% of the LSO cells on passing from waking to sleep. Sleep may determine either an increase or a decrease of the firing number in response to sound. The most important change observed in decreasing firing units was the near-absence of units responding to sound in the paradoxical sleep phase during the last 40 ms of the response. The waking cues for binaural detection, studied with our experimental paradigm, disappeared during slow wave sleep. We thus conclude that the binaural function of some lateral superior olive neurons (11.5%) was impaired during this sleep period in the present experimental conditions. Auditory efferent pathways are postulated to impinge on the auditory processing at LSO nucleus level during the sleep-waking cycle. Thus, auditory unitary activity appears to be dependent on both incoming information, and a CNS descending action closely related to the waking and sleep periods. Functional interactions between pontine sleep-related groups of neurons and auditory system units are suggested.