Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Drug Des Devel Ther ; 13: 3753-3772, 2019.
Article in English | MEDLINE | ID: mdl-31802849

ABSTRACT

Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors. There still is the need to develop smart and synergistic therapeutic approaches to achieve the synthesis of strong and effective drugs and delivery systems. Much interest has been paid to the development of smart drug delivery systems (drug-loaded particles) that utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This review will summarize some main ideas about the effect of each strategy and how the combination of some or all of them has shown to be effective. After a brief introduction of current cancer therapies and their limitations, we describe the biological barriers that nanoparticles need to overcome, followed by presenting different types of drug delivery systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-responsive targeting is also discussed by looking at the intra- and extracellular conditions for specific drug release. We include a significant amount of information summarized in tables and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the design of active-targeted systems, and targeting of different organs. We also discuss some still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting ligands.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Humans
2.
Biomolecules ; 9(4)2019 04 18.
Article in English | MEDLINE | ID: mdl-31003476

ABSTRACT

In this study, we identified the proton-coupled folate transporter (PCFT) as a route for targeted delivery of drugs to some gliomas. Using the techniques of confocal imaging, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and small interfering (siRNA) knockdown against the PCFT, we demonstrated that Gl261 and A172 glioma cells, but not U87 and primary cultured astrocytes, express the PCFT, which provides selective internalization of folic acid (FA)-conjugated cytochrome c-containing nanoparticles (FA-Cyt c NPs), followed by cell death. The FA-Cyt c NPs (100 µg/mL), had no cytotoxic effects in astrocytes but caused death in glioma cells, according to their level of expression of PCFT. Whole-cell patch clamp recording revealed FA-induced membrane currents in FA-Cyt c NPs-sensitive gliomas, that were reduced by siRNA PCFT knockdown in a similar manner as by application of FA-Cyt c NPs, indicating that the PCFT is a route for internalization of FA-conjugated NPs in these glioma cells. Analysis of human glioblastoma specimens revealed that at least 25% of glioblastomas express elevated level of either PCFT or folate receptor (FOLR1). We conclude that the PCFT provides a mechanism for targeted delivery of drugs to some gliomas as a starting point for the development of efficient methods for treating gliomas with high expression of PCFT and/or FOLR1.


Subject(s)
Brain Neoplasms/metabolism , Cytochromes c/chemistry , Glioma/metabolism , Nanoconjugates/chemistry , Proton-Coupled Folate Transporter/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Line, Tumor , Cells, Cultured , Cytochromes c/pharmacology , Folic Acid/chemistry , Folic Acid/pharmacology , Humans , Mice , Mice, Inbred C57BL , Nanoconjugates/adverse effects
3.
Mol Pharm ; 13(8): 2844-54, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27283751

ABSTRACT

Proteins often possess highly specific biological activities that make them potential therapeutics, but their physical and chemical instabilities during formulation, storage, and delivery have limited their medical use. Therefore, engineering of nanosized vehicles to stabilize protein therapeutics and to allow for targeted treatment of complex diseases, such as cancer, is of considerable interest. A micelle-like nanoparticle (NP) was designed for both, tumor targeting and stimulus-triggered release of the apoptotic protein cytochrome c (Cyt c). This system is composed of a Cyt c NP stabilized by a folate-receptor targeting amphiphilic copolymer (FA-PEG-PLGA) attached to Cyt c through a redox-sensitive bond. FA-PEG-PLGA-S-S-Cyt c NPs exhibited excellent stability under extracellular physiological conditions, whereas once in the intracellular reducing environment, Cyt c was released from the conjugate. Under the same conditions, the folate-decorated NP reduced folate receptor positive HeLa cell viability to 20%, while the same complex without FA only reduced it to 80%. Confocal microscopy showed that the FA-PEG-PLGA-S-S-Cyt c NPs were internalized by HeLa cells and were capable of endosomal escape. The specificity of the folate receptor-mediated internalization was confirmed by the lack of uptake by two folate receptor deficient cell lines: A549 and NIH-3T3. Finally, the potential as antitumor therapy of our folate-decorated Cyt c-based NPs was confirmed with an in vivo brain tumor model. In conclusion, we were able to create a stable, selective, and smart nanosized Cyt c delivery system.


Subject(s)
Cytochromes c/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , A549 Cells , Animals , Apoptosis , Cytochromes c/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Glioma/metabolism , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Micelles , NIH 3T3 Cells , Polymers/chemistry
4.
J Nanomed Nanotechnol ; 6(3)2016 Jun.
Article in English | MEDLINE | ID: mdl-27088048

ABSTRACT

Photodynamic cancer therapy is still limited in its efficiency because of a lack of targeted methods avoiding non-specific toxicity. To overcome this we developed a system that is solely effective upon cellular uptake and intracellular activation by incorporating redox-sensitive chemistry. We used a nanoprecipitation method to obtain human serum albumin nanoparticles (HSA NP) with a diameter of 295 ± 5 nm and decorated them with the photosensitizer (PS) chlorin e6 (Ce6). The NP were stabilized using a redox-sensitive cross-linker to create a smart drug delivery system that is activated only upon NP disintegration in the reducing intracellular environment. Indeed, our drug delivery NP broke down in an environment emulating the reducing intracellular environment with 10 mM glutathione, but not under extracellular conditions. In contrast, the control cross-linked with glutaraldehyde did not break down in the reducing environment. Upon NP disintegration Ce6 fluorescence doubled as the result of diminished self-quenching. While the Ce6-HSA NP did not produce a significant amount of singlet oxygen upon irradiation, NP disintegration restored singlet oxygen production to about half of the value generated by the free Ce6. In vitro experiments with HeLa cells showed that the smart system was able to kill up to 81% of the cells while the glutaraldehyde cross-linked control only killed 56% of them at a drug concentration of 10 ng/ml. Also, Ce6 immobilization in HSA NP prevented dark toxicity in three different cell lines. For the first time, we demonstrate that it is possible to design a smart NP drug delivery system delivering a PS drug to cancer cells while avoiding toxicity prior to the uptake and irradiation. This finding may provide a means of designing more efficient PDT in cancer treatment.

5.
FEBS Open Bio ; 5: 397-404, 2015.
Article in English | MEDLINE | ID: mdl-26101738

ABSTRACT

Lipid-protein complexes comprised of oleic acid (OA) non-covalently coupled to human/bovine α-lactalbumin, named HAMLET/BAMLET, display cytotoxic properties against cancer cells. However, there is still a substantial debate about the role of the protein in these complexes. To shed light into this, we obtained three different BAMLET complexes using varying synthesis conditions. Our data suggest that to form active BAMLET particles, OA has to reach critical micelle concentration with an approximate diameter of 250 nm. Proteolysis experiments on BAMLET show that OA protects the protein and is probably located on the surface, consistent with a micelle-like structure. Native or unfolded α-lactalbumin without OA lacked any tumoricidal activity. In contrast, OA alone killed cancer cells with the same efficiency at equimolar concentrations as its formulation as BAMLET. Our data show unequivocally that the cytotoxicity of the BAMLET complex is exclusively due to OA and that OA alone, when formulated as a micelle, is as toxic as the BAMLET complex. The contradictory literature results on the cytotoxicity of BAMLET might be explained by our finding that it was imperative to sonicate the samples to obtain toxic OA.

6.
J Nanomed Nanotechnol ; 6(5)2015 Oct.
Article in English | MEDLINE | ID: mdl-27182458

ABSTRACT

Effective cancer treatment needs both, passive and active targeting approaches, to achieve highly specific drug delivery to the target cells while avoiding cytotoxicity to normal cells. Protein drugs are useful in this context because they can display excellent specificity and potency. However, their use in therapeutic formulations is limited due to their physical and chemical instability during storage and administration. Polysaccharides have been used to stabilize proteins during formulation and delivery. To accomplish both, stabilization and targeting simultaneously, the apoptosis-inducing protein cytochrome c (Cyt c) was modified with the polysaccharide hyaluronic acid (HA) because its corresponding receptor CD44 is overexpressed in many cancers. Cyt c-HA bioconjugates were formed using low and high molecular weight HA (8 kDa and 1 MDa) with a resultant Cyt c loading percentage of 4%. Circular dichroism and a cell-free caspase assay showed minor structural changes and high bioactivity (more than 80% caspase activation) of Cyt c, respectively, after bioconjugate formation. Two CD44-positive cancer cells lines, HeLa and A549 cells, and two CD44-negative normal cell lines, Huvec and NIH-3T3 cells, were incubated with the samples to assess selectivity and cytotoxicity. After 24 h of incubation with the samples, cancer cell viability was reduced at least 3-fold while CD44-negative control cell lines remained minimally affected. Fluorescence imaging confirmed selective internalization of the Cyt c-HA construct by CD44-positive cancer cell lines. These results demonstrate the development of a drug delivery system that incorporates passive and active targeting which is essential for cancer treatment.

7.
J Nanobiotechnology ; 12: 33, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25179308

ABSTRACT

BACKGROUND: Cytochrome c is an essential mediator of apoptosis when it is released from the mitochondria to the cytoplasm. This process normally takes place in response to DNA damage, but in many cancer cells (i.e., cancer stem cells) it is disabled due to various mechanisms. However, it has been demonstrated that the targeted delivery of Cytochrome c directly to the cytoplasm of cancer cells selective initiates apoptosis in many cancer cells. In this work we designed a novel nano-sized smart Cytochrome c drug delivery system to induce apoptosis in cancer cells upon delivery. RESULTS: Cytochrome c was precipitated with a solvent-displacement method to obtain protein nanoparticles. The size of the Cytochrome c nanoparticles obtained was 100-300 nm in diameter depending on the conditions used, indicating good potential to passively target tumors by the Enhanced Permeability and Retention effect. The surface of Cytochrome c nanoparticles was decorated with poly (lactic-co-glycolic) acid-SH via the linker succinimidyl 3-(2-pyridyldithio) propionate to prevent premature dissolution during delivery. The linker connecting the polymer to the protein nanoparticle contained a disulfide bond thus allowing polymer shedding and subsequent Cytochrome c release under intracellular reducing conditions. A cell-free caspase-3 assay revealed more than 80% of relative caspase activation by Cytochrome c after nanoprecipitation and polymer modification when compared to native Cytochrome c. Incubation of HeLa cells with the Cytochrome c based-nanoparticles showed significant reduction in cell viability after 6 hours while native Cytochrome c showed none. Confocal microscopy confirmed the induction of apoptosis in HeLa cells when they were stained with 4',6-diamidino-2-phenylindole and propidium iodide after incubation with the Cytochrome c-based nanoparticles. CONCLUSIONS: Our results demonstrate that the coating with a hydrophobic polymer stabilizes Cytochrome c nanoparticles allowing for their delivery to the cytoplasm of target cells. After smart release of Cytochrome c into the cytoplasm, it induced programmed cell death.


Subject(s)
Apoptosis/drug effects , Cytochromes c/pharmacology , Nanoparticles/chemistry , Caspase 3/metabolism , Cell Survival/drug effects , Cytochromes c/chemistry , Cytochromes c/pharmacokinetics , Drug Delivery Systems , HeLa Cells , Humans , Lactic Acid , Particle Size , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer
8.
BMC Biochem ; 15: 16, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25095792

ABSTRACT

BACKGROUND: Cytochrome c (Cyt c) is an apoptosis-initiating protein when released into the cytoplasm of eukaryotic cells and therefore a possible cancer drug candidate. Although proteins have been increasingly important as pharmaceutical agents, their chemical and physical instability during production, storage, and delivery remains a problem. Chemical glycosylation has been devised as a method to increase protein stability and thus enhance their long-lasting bioavailability. RESULTS: Three different molecular weight glycans (lactose and two dextrans with 1 kD and 10 kD) were chemically coupled to surface exposed Cyt c lysine (Lys) residues using succinimidyl chemistry via amide bonds. Five neo-glycoconjugates were synthesized, Lac4-Cyt-c, Lac9-Cyt-c, Dex5(10kD)-Cyt-c, Dex8(10kD)-Cyt-c, and Dex3(1kD)-Cyt-c. Subsequently, we investigated glycoconjugate structure, activity, and stability. Circular dichroism (CD) spectra demonstrated that Cyt c glycosylation did not cause significant changes to the secondary structure, while high glycosylation levels caused some minor tertiary structure perturbations. Functionality of the Cyt c glycoconjugates was determined by performing cell-free caspase 3 and caspase 9 induction assays and by measuring the peroxidase-like pseudo enzyme activity. The glycoconjugates showed ≥94% residual enzyme activity and 86 ± 3 to 95 ± 1% relative caspase 3 activation compared to non-modified Cyt c. Caspase 9 activation by the glycoconjugates was with 92 ± 7% to 96 ± 4% within the error the same as the caspase 3 activation. There were no major changes in Cyt c activity upon glycosylation. Incubation of Dex3(1 kD)-Cyt c with mercaptoethanol caused significant loss in the tertiary structure and a drop in caspase 3 and 9 activation to only 24 ± 8% and 26 ± 6%, respectively. This demonstrates that tertiary structure intactness of Cyt c was essential for apoptosis induction. Furthermore, glycosylation protected Cyt c from detrimental effects by some stresses (i.e., elevated temperature and humidity) and from proteolytic degradation. In addition, non-modified Cyt c was more susceptible to denaturation by a water-organic solvent interface than its glycoconjugates, important for the formulation in polymers. CONCLUSION: The results demonstrate that chemical glycosylation is a potentially valuable method to increase Cyt c stability during formulation and storage and potentially during its application after administration.


Subject(s)
Caspase 3/metabolism , Caspase 9/metabolism , Cytochromes c/chemistry , Dextrans/chemistry , Lactose/chemistry , Apoptosis , Biological Availability , Cell-Free System , Circular Dichroism , Cytochromes c/pharmacokinetics , Glycosylation , Humans , Lysine/chemistry , Molecular Conformation , Protein Stability , Proteolysis
9.
Mol Pharm ; 11(1): 102-11, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24294910

ABSTRACT

Cytochrome c (Cyt c) is a small mitochondrial heme protein involved in the intrinsic apoptotic pathway. Once Cyt c is released into the cytosol, the caspase mediated apoptosis cascade is activated resulting in programmed cell death. Herein, we explore the covalent immobilization of Cyt c into mesoporous silica nanoparticles (MSN) to generate a smart delivery system for intracellular drug delivery to cancer cells aiming at affording subsequent cell death. Cyt c was modified with sulfosuccinimidyl-6-[3'-(2-pyridyldithio)-propionamido] hexanoate (SPDP) and incorporated into SH-functionalized MSN by thiol-disulfide interchange. Unfortunately, the delivery of Cyt c from the MSN was not efficient in inducing apoptosis in human cervical cancer HeLa cells. We tested whether chemical Cyt c glycosylation could be useful in overcoming the efficacy problems by potentially improving Cyt c thermodynamic stability and reducing proteolytic degradation. Cyt c lysine residues were modified with lactose at a lactose-to-protein molar ratio of 3.7 ± 0.9 using mono(lactosylamido)-mono(succinimidyl) suberate linker chemistry. Circular dichroism (CD) spectra demonstrated that part of the activity loss of Cyt c was due to conformational changes upon its modification with the SPDP linker. These conformational changes were prevented in the glycoconjugate. In agreement with the unfolding of Cyt c by the linker, a proteolytic assay demonstrated that the Cyt c-SPDP conjugate was more susceptible to proteolysis than Cyt c. Attachment of the four lactose molecules reversed this increased susceptibility and protected Cyt c from proteolytic degradation. Furthermore, a cell-free caspase-3 assay revealed 47% and 87% of relative caspase activation by Cyt c-SPDP and the Cyt c-lactose bioconjugate, respectively, when compared to Cyt c. This again demonstrates the efficiency of the glycosylation to improve maintaining Cyt c structure and thus function. To test for cytotoxicity, HeLa cells were incubated with Cyt c loaded MSN at different Cyt c concentrations (12.5, 25.0, and 37.5 µg/mL) for 24-72 h and cellular metabolic activity determined by a cell proliferation assay. While MSN-SPDP-Cyt c did not induced cell death, the Cyt c-lactose bioconjugate induced significant cell death after 72 h, reducing HeLa cell viability to 67% and 45% at the 25 µg/mL and 37.5 µg/mL concentrations, respectively. Confocal microscopy confirmed that the MSN immobilized Cyt c-lactose bioconjugate was internalized by HeLa cells and that the bioconjugate was capable of endosomal escape. The results clearly demonstrate that chemical glycosylation stabilized Cyt c upon formulation of a smart drug delivery system and upon delivery into cancer cells and highlight the general potential of chemical protein glycosylation to improve the stability of protein drugs.


Subject(s)
Apoptosis/drug effects , Cross-Linking Reagents/chemistry , Cytochromes c/chemistry , Drug Delivery Systems , Nanoparticles/administration & dosage , Silicon Dioxide/chemistry , Succinimides/chemistry , Caspase 3/metabolism , Circular Dichroism , Cytochromes c/administration & dosage , Glycosylation , HeLa Cells , Humans , Nanoparticles/chemistry
10.
Results Pharma Sci ; 2: 79-85, 2012.
Article in English | MEDLINE | ID: mdl-23316451

ABSTRACT

One of the first methods to encapsulate drugs within polymer nanospheres was developed by Fessi and coworkers in 1989 and consisted of one-step nanoprecipitation based on solvent displacement. However, proteins are poorly encapsulated within polymer nanoparticles using this method because of their limited solubility in organic solvents. To overcome this limitation, we developed a two-step nanoprecipitation method and encapsulated various proteins with high efficiency into poly(lactic-co-glycolic)acid (PLGA) nanospheres (NP). In this method, a protein nanoprecipitation step is used first followed by a second polymer nanoprecipitation step. Two model enzymes, lysozyme and α-chymotrypsin, were used for the optimization of the method. We obtained encapsulation efficiencies of >70%, an amount of buffer-insoluble protein aggregates of typically <2%, and a high residual activity of typically >90%. The optimum conditions identified for lysozyme were used to successfully encapsulate cytochrome c(Cyt-c), an apoptosis-initiating basic protein of similar size, to verify reproducibility of the encapsulation procedure. The size of the Cyt-c loaded-PLGA nanospheres was around 300-400 nm indicating the potential of the delivery system to passively target tumors. Cell viability studies, using a human cervical cancer cell line (HeLa), demonstrate excellent biocompatibility of the PLGA nanoparticles. PLGA nanoparticles carrying encapsulated Cyt-c were not efficient in causing apoptosis presumably because PLGA nanoparticles are not efficiently taken up by the cells. Future systems will have to be optimized to ascertain efficient cellular uptake of the nanoparticles by, e.g., surface modification with receptor ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...