Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 222(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37526691

ABSTRACT

Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.


Subject(s)
Caveolins , Proteostasis , Caveolins/metabolism , Caveolin 1/metabolism , Membrane Proteins/metabolism , Caveolae/metabolism , Cell Membrane/metabolism , Golgi Apparatus/metabolism
2.
Science ; 370(6514)2020 10 16.
Article in English | MEDLINE | ID: mdl-33060333

ABSTRACT

Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.


Subject(s)
Bacteria/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate , Lipid Droplets/immunology , Animals , Antimicrobial Cationic Peptides/metabolism , Fatty Acids/metabolism , GTP Phosphohydrolases/metabolism , HEK293 Cells , Humans , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/immunology , Cathelicidins
3.
J Cell Sci ; 133(9)2020 05 11.
Article in English | MEDLINE | ID: mdl-32393675

ABSTRACT

Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.


Subject(s)
Caveolae , Caves , Animals , Caveolin 1 , Cell Membrane , Endothelial Cells
4.
Cell Mol Life Sci ; 77(14): 2839-2857, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31664461

ABSTRACT

Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.


Subject(s)
Annexin A6/genetics , Cholesterol/genetics , GTPase-Activating Proteins/genetics , Niemann-Pick Disease, Type C/genetics , rab GTP-Binding Proteins/genetics , Animals , CHO Cells , Carrier Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Cholesterol/metabolism , Cricetulus , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endosomes/genetics , Endosomes/metabolism , Humans , Membrane Proteins/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Protein Domains/genetics , Protein Transport/genetics , RNA, Small Interfering/genetics , rab7 GTP-Binding Proteins
5.
J Biol Chem ; 291(3): 1320-35, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26578516

ABSTRACT

Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVß3 and α5ß1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.


Subject(s)
Annexin A6/metabolism , Cholesterol/metabolism , Endosomes/metabolism , Integrin alpha5beta1/metabolism , Integrin alphaVbeta3/metabolism , Qa-SNARE Proteins/metabolism , Animals , Annexin A6/antagonists & inhibitors , Annexin A6/genetics , CHO Cells , Cell Line, Tumor , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cell Movement , Cells, Cultured , Cricetulus , Endosomes/ultrastructure , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Humans , Integrin alpha5beta1/antagonists & inhibitors , Integrin alphaVbeta3/antagonists & inhibitors , Mice , Microscopy, Confocal , Microscopy, Video , Qa-SNARE Proteins/antagonists & inhibitors , Qa-SNARE Proteins/genetics , RNA Interference , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...