Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Mosq Control Assoc ; 35(2): 107-112, 2019 06.
Article in English | MEDLINE | ID: mdl-31442127

ABSTRACT

The World Health Organization (WHO) has recently recommended indoor residual spraying (IRS) as part of a vector control strategy to combat Aedes-borne diseases, including dengue, chikungunya, and Zika viruses. Hand compression sprayers have been used in malaria prevention and control programs worldwide since the 1950s and are a standard for IRS application. However, there are technological advances that should be considered to improve IRS application (e.g., flow-control valves, rechargeable-battery equipment, reduced-drift nozzles, etc.), particularly if interventions are performed in urban areas to target Aedes aegypti. Using WHO guidelines, we contrasted technical characteristics of potential IRS equipment including hand compression sprayers (Hudson X-pert, Goizper IK Vector Control Super), rechargeable-battery sprayers (Solo 416, Birchmeier REC 15ABZ, Hudson NeverPump), and motorized sprayers (Honda WJR 2525, Kawashima AK35GX). Measurements included flow rate, droplet size, battery/fuel life, and technical/physical characteristics. Flow rate, the most important parameter, of the Hudson X-pert was stabilized at 550 ml/min by the use of a control flow valve (CFV). The IK Vector Control Super had integrated CFVs and produced a similar flow as the Hudson X-pert. Rechargeable-battery equipment provided consistent flow as well as negligible noise. Motorized sprayers also produced consistent flow, but their weight, high noise pollution when used indoors, and high engine temperature made them highly unpleasant for technicians. We identify alternatives to the more traditional hand compression Hudson X-pert sprayer with technical and operational considerations for performing IRS.


Subject(s)
Aedes , Housing , Insecticides , Mosquito Control/instrumentation , Animals
2.
J Am Mosq Control Assoc ; 35(2): 140-146, 2019 06.
Article in English | MEDLINE | ID: mdl-31442128

ABSTRACT

We evaluated the efficacy of aerial ultra-low-volume (ULV) insecticide spraying in field bioassays with caged Aedes aegypti in May 2017 in Puerto Vallarta, Jalisco, Mexico. The insecticides tested included an organophosphate (Mosquitocida UNO ULV) and a neonicotinoid-pyrethroid combination (Cielo). Two Ae. aegypti populations were evaluated: a field pyrethroid-resistant local strain (Puerto Vallarta) and an insecticide-susceptible laboratory strain (New Orleans). Knockdown after 1 h by both products was ≥97.0%, and mortality after 24 h was ≥98% for the susceptible laboratory strain. Knockdown of the local Puerto Vallarta field strain by both products after 1 h was ≥96.5%; and mosquito mortality after 24 h was also very high (≥98%). Meteorological conditions during this evaluation were favorable for aerial mosquito control and represented conditions that typically occur during adulticide space spray applications. Temperature oscillated between 24°C and 26°C with winds between 6 and 10 km/h. The majority of droplets met the droplet distribution criteria required for the insecticides. The evaluation demonstrated an acceptable performance of both products for Ae. aegypti control when applied undiluted at a rate of 199.4 ml/ha and 73.07 ml/ha for Mosquitocida UNO ULV and Cielo, respectively. The volume median diameter (VMD) droplet size was characterized at 31.3 µm and 37.3 µm, respectively.


Subject(s)
Aedes , Insecticides , Mosquito Control , Animals , Female , Mexico
3.
PLoS Negl Trop Dis ; 13(2): e0007203, 2019 02.
Article in English | MEDLINE | ID: mdl-30817759

ABSTRACT

Challenges in maintaining high effectiveness of classic vector control in urban areas has renewed the interest in indoor residual spraying (IRS) as a promising approach for Aedes-borne disease prevention. While IRS has many benefits, application time and intrusive indoor applications make its scalability in urban areas difficult. Modifying IRS to account for Ae. aegypti resting behavior, named targeted IRS (TIRS, spraying walls below 1.5 m and under furniture) can reduce application time; however, an untested assumption is that modifications to IRS will not negatively impact entomological efficacy. We conducted a comparative experimental study evaluating the residual efficacy of classically-applied IRS (as developed for malaria control) compared to two TIRS application methods using a carbamate insecticide against a pyrethroid-resistant, field-derived Ae. aegypti strain. We performed our study within a novel experimental house setting (n = 9 houses) located in Merida (Mexico), with similar layouts and standardized contents. Classic IRS application (insecticide applied to full walls and under furniture) was compared to: a) TIRS: insecticide applied to walls below 1.5 m and under furniture, and b) Resting Site TIRS (RS-TIRS): insecticide applied only under furniture. Mosquito mortality was measured eight times post-application (out to six months post-application) by releasing 100 Ae. aegypti females /house and collecting live and dead individuals after 24 hrs exposure. Compared to Classic IRS, TIRS and RS-TIRS took less time to apply (31% and 82% reduction, respectively) and used less insecticide (38% and 85% reduction, respectively). Mortality of pyrethroid-resistant Ae. aegypti did not significantly differ among the three IRS application methods up to two months post application, and did not significantly differ between Classic IRS and TIRS up to four months post application. These data illustrate that optimizing IRS to more efficiently target Ae. aegypti can both reduce application time and insecticide volume with no apparent reduction in entomological efficacy.


Subject(s)
Aedes/drug effects , Housing , Insecticides/pharmacology , Mosquito Control/methods , Phenylcarbamates/pharmacology , Animals , Female , Insecticide Resistance , Mexico , Pyrethrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...