Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611492

ABSTRACT

Opuntia ficus-indica has always interacted with many phytophagous insects; two of them are Dactylopius coccus and D. opuntiae. Fine cochineal (D. coccus) is produced to extract carminic acid, and D. opuntiae, or wild cochineal, is an invasive pest of O. ficus-indica in more than 20 countries around the world. Despite the economic and environmental relevance of this cactus, D. opuntiae, and D. coccus, there are few studies that have explored volatile organic compounds (VOCs) derived from the plant-insect interaction. The aim of this work was to determine the VOCs produced by D. coccus and D. opuntiae and to identify different VOCs in cladodes infested by each Dactylopius species. The VOCs (essential oils) were obtained by hydrodistillation and identified by GC-MS. A total of 66 VOCs from both Dactylopius species were identified, and 125 from the Esmeralda and Rojo Pelón cultivars infested by D. coccus and D. opuntiae, respectively, were determined. Differential VOC production due to infestation by each Dactylopius species was also found. Some changes in methyl salicylate, terpenes such as linalool, or the alcohol p-vinylguaiacol were related to Dactylopius feeding on the cladodes of their respective cultivars. Changes in these VOCs and their probable role in plant defense mechanisms should receive more attention because this knowledge could improve D. coccus rearing or its inclusion in breeding programs for D. opuntiae control in regions where it is a key pest of O. ficus-indica.

2.
Animals (Basel) ; 13(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36978546

ABSTRACT

The aim of this work was to supplement a diet with chia seeds (Salvia hispanica L.) based on the requirements of finishing lambs for meat, and to analyze biometric parameters and fatty acid profiles in meat. Eighteen male Rambouillet lambs with a bodyweight of 25 kg were used. Animals were kept in individual pens with water and feed provided ad libitum. Three finishing diets were designed with the inclusion of 0, 50 and 100 g dry matter chia seeds and divided among the animals (n = 6). The experimental period lasted 60 days. The weights of the individual lambs were recorded every 14 days. At the end of the experiment, the animals were slaughtered and the weights of the hot carcasses and non-meat components were registered. In addition, an analysis of the fatty acid composition was carried out in the muscles (Longissimus thoracis). The total weight gain and average daily gain displayed significant differences (p < 0.05). Initial and final bodyweights, such as the dry matter intake, did not display differences. The fatty acid profile of the meat tended to decrease the SFA (stearic acid) and increase MUFA (oleic acid) (p < 0.0001) when chia seeds were added to the lamb diets. In conclusion, chia seed supplementation did not increase meat production or other biometric parameters; however, it modified the fatty acid profile in L. thoracis.

3.
Langmuir ; 29(25): 7642-54, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23697446

ABSTRACT

Using safflower oil as the liquid phase, we investigated the organogelation properties of stearic acid (SA), (R)-12-hydroxystearic acid (HSA), and different primary and secondary amides synthesized from SA and HSA. The objective was to establish the relationship between the gelator's molecular structure, solid content, and gels' microstructure that determines the rheological properties of organogels developed at two cooling rates, 1 and 20 °C/min. The results showed that the presence of a 12-OH group in the gelator molecule makes its crystallization kinetics cooling rate dependent and modifies its crystallization behavior. Thus, SA crystallizes as large platelets, while HSA crystallizes as fibers forming gels with higher solid content, particularly at 20 °C/min. The addition to HSA of a primary or a secondary amide bonded with an alkyl group resulted in gelator molecules that crystallized as fibrillar spherulites at both cooling rates. Independent of the cooling rate, gels of HSA and its amide derivatives showed thixotropic behavior. The rheological properties of the amide's organogels depend on a balance between hydrogen-bonding sites and the alkyl chain length bonded to the amide group. However, it might also be associated with the effect that the gelators' molecular weight has on crystal growth and its consequence on fiber interpenetration among vicinal spherulites. These results were compared with those obtained with candelilla wax (CW), a well-known edible gelling additive used by the food industry. CW organogels had higher elasticity than HSA gels but lower than the gels formed by amides. Additionally, CW gels showed similar or even higher thixotropic behavior than HSA and the amide's gels. These remarkable rheological properties resulted from the microstructural organization of CW organogels. We concluded that microstructure has a more important role determining the organogels' rheology than the solid content. The fitting models developed to describe the organogels rheological behavior support this argument.

4.
J Agric Food Chem ; 61(14): 3509-16, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23495835

ABSTRACT

The primary structure of amaranth 11S globulin (Ah11S) was engineered with the aim to improve its functional properties. Four continuous methionines were inserted in variable region V, obtaining the Ah11Sr+4M construction. Changes on protein structure and surface characteristics were analyzed in silico. Solubility and heat-induced gelation of recombinant amaranth 11S proglobulin (Ah11Sr and Ah11Sr+4M) were compared with the native protein (Ah11Sn) purified from amaranth seed flour. The Ah11Sr+4 M showed the highest surface hydrophobicity, but as consequence the solubility was reduced. At low ionic strength (µ = 0.2) and acidic pH (<4.1), the recombinant proteins Ah11Sr and Ah11Sr+4 M had the highest and lowest solubility values, respectively. All globulins samples formed gels at 90 °C and low ionic strength, but Ah11Sn produced the weakest and Ah11Sr the strongest gels. Differential scanning calorimetry analysis under gel forming conditions revealed only exothermic transitions for all amaranth 11S globulins analyzed. In conclusion, the 3D structure analysis has revealed interesting molecular features that could explain the thermal resistance and gel forming ability of amaranth 11S globulins. The incorporation of four continuous methionines in amaranth increased the hydrophobicity, and self-supporting gels formed had intermediate hardness between Ah11Sn and Ah11Sr. These functional properties could be used in the food industry for the development of new products based on amaranth proteins.


Subject(s)
Amaranthus/chemistry , Dietary Proteins/chemistry , Globulins/chemistry , Seed Storage Proteins/chemistry , Seeds/chemistry , Dietary Proteins/metabolism , Dietary Supplements , Food, Formulated , Gels , Globulins/genetics , Globulins/metabolism , Hot Temperature , Phase Transition , Protein Conformation , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Solubility , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...