Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 12555, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467372

ABSTRACT

Candida tropicalis is a human pathogen associated with high mortality rates. We have reported a switching system in C. tropicalis consisting of five morphotypes - the parental, switch variant (crepe and rough), and revertant (crepe and rough) strains, which exhibited altered virulence in a Galleria mellonella model. Here, we evaluate whether switching events may alter host-pathogen interactions by comparing the attributes of the innate responses to the various states. All switched strains induced higher melanization in G. mellonella larvae than that induced by the parental strain. The galiomicin expression was higher in the larvae infected with the crepe and rough morphotypes than that in the larvae infected with the parental strain. Hemocytes preferentially phagocytosed crepe variant cells over parental cells in vitro. In contrast, the rough variant cells were less phagocytosed than the parental strain. The hemocyte density was decreased in the larvae infected with the crepe variant compared to that in the larvae infected with the parental strain. Interestingly, larvae infected with the revertant of crepe restored the hemocyte density levels that to those observed for larvae infected with the parental strain. Most of the switched strains were more resistant to hemocyte candidacidal activity than the parental strain. These results indicate that the switch states exhibit similarities as well as important differences during infection in a G. mellonella model.


Subject(s)
Candida tropicalis/physiology , Candidiasis/immunology , Candidiasis/metabolism , Host-Pathogen Interactions , Lepidoptera/microbiology , Phenotype , Animals , Candidiasis/blood , Disease Models, Animal , Gene Expression Regulation , Hemocytes/immunology , Melanins/metabolism , Phagocytosis , Species Specificity , Survival Analysis
3.
Med Mycol ; 52(1): 106-14, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23971864

ABSTRACT

Although Candida tropicalis has become an increasingly important human pathogen, little is known regarding its potential to cause disease. In this study we evaluated the phenotypic switching ability of C. tropicalis and analyzed the effect of switching on biological properties related to virulence factors. We demonstrated that C. tropicalis switched spontaneously, reversibly and at high frequency (10(-1) to 10(-3)) when grown on yeast extract-peptone-D-glucose (YPD) agar medium. Phenotypic switching in five clinical isolates of C. tropicalis resulted in colonies exhibiting the following morphologies: crepe, rough, crater, irregular center, mycelial and diffuse. The majority of the variant colonies were associated with higher percentages of filamentous growth relative to their parental unswitched isolates. Significant differences (P < 0.05) in the production of hemolytic factor were found between most of the switched variants and their respective parental counterparts. Variant colonies exhibiting the crepe (derived from isolates 49.07 and 100.10) and rough phenotype (derived from isolate 49.07) had higher biofilm formation than their parental counterparts exhibiting a smooth dome surface (P < 0.05). Our data revealed that switching was correlated with changes in the in vitro minimum inhibitory concentrations (MICs) of a subset of the switched variants phenotypes to itraconazole. While the MIC to itraconazole was higher for crepe variant compared with its parental isolate 49.07, the rough variant of 100.10 had a lower MIC to this antifungal agent. The presented data support the role of phenotypic switching in promoting changes in phenotypic expression of putative virulence traits and itraconazole susceptibility of clinical isolates of C. tropicalis.


Subject(s)
Antifungal Agents/pharmacology , Candida tropicalis/physiology , Drug Resistance, Fungal , Virulence Factors/metabolism , Biofilms/growth & development , Candida tropicalis/drug effects , Candida tropicalis/growth & development , Candida tropicalis/pathogenicity , Candidiasis/microbiology , Culture Media/chemistry , Humans , Itraconazole/pharmacology , Microbial Sensitivity Tests , Phenotype , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...